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We investigate the interaction of a periodic solution and a one-soliton solution for the spin-polarized current
in a uniaxial ferromagnetic nanowire. The amplitude and wave number of the periodic solution for the spin
current give different contributions to the width, velocity, and amplitude of the soliton. Moreover, we found
that the soliton can be trapped only in space with proper conditions. Finally, we analyze the modulation
instability and discuss dark solitary wave propagation for a spin current on the background of a periodic
solution. In some special cases, the solution can be expressed as the linear combination of the periodic and
soliton solutions.
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I. INTRODUCTION

The study of magnetoelectronics has received consider-
able interest for its potential technological applications. The-
oretical and experimental investigations, mainly concen-
trated on giant magnetoresistance, are of fundamental
importance in the understanding of magnetism, and may be
applied in the fabrication of magnetic devices. In metallic
ferromagnets, the differences between the electronic bands
and the scattering cross sections of impurities for majority
and minority spins at the Fermi energy cause spin-dependent
mobilities �1�. The difference between spin-up and spin-
down electric currents is called the spin current. It is a tensor,
with a direction of flow and spin polarization parallel to the
equilibrium magnetization vector M�r , t� �2�,

J =
P�B

eMs
je � M�r,t� , �1�

where P is the spin polarization of the current, �B is the Bohr
magneton, and e is the magnitude of the electronic charge.
The vector je tracks the direction of the charge current,
M�r , t� describes the direction of the spin polarization of the
current, and Ms is the saturation magnetization.

When the magnetization directions in the systems are not
collinear, the polarization directions of the nonequilibrium
accumulations and currents are not parallel or antiparallel
with the magnetizations. This gives rise to interesting phys-
ics like the spin-transfer effect in spin valves. The dynamics
of the magnetization �3� is then governed by the parametric
torques due to the spin-polarized current and magnetic field.
This spin-transfer effect was theoretically proposed �4,5� and
subsequently verified in experiment �6�. Since this novel spin
torque was proposed, many interesting phenomena have
been studied, such as spin-wave excitation �7,8�, magnetiza-
tion switching and reversal �9–14�, domain-wall dynamics
�15,16�, and magnetic solitons �17,18�. In these studies, the
dynamics of the magnetization M�r , t� is described by a
modified Landau-Lifshitz equation including a term for the
spin-transfer torque. In a typical ferromagnet, the magnetiza-
tion is rarely uniform, i.e., the magnetization has spatial de-
pendence, and a new form of spin torque �7,15� was pro-
posed in conducting ferromagnetic structures. With this spin

torque, nonlinear excitations on the background of the
ground state are studied, such as the unique features of Néel-
wall motion in a nanowire �15�, the kink soliton solution and
the domain-wall dynamics in a biaxial ferromagnet �16�,
bulk spin excitations �7,15�, and magnetic soliton solutions
for the isotropic �17� and uniaxial anisotropic cases �18�.
Nonlinear spin waves and magnetic solitons are always top-
ics of research in confined ferromagnetic materials �19–22�
due to the interaction between the spin-polarized current and
local magnetization, especially the generation and detection
of magnon excitation �20� in a magnetic multilayer.

From Eq. �1� one can obtain the solution for the spin
current if the magnetization M�r , t� is known. For simplicity,
we consider an infinitely long ferromagnetic nanowire,
where the electronic current flows along the length of the
wire, defined as the x direction. The z axis is taken as the
direction of the uniaxial anisotropy field and the external
field. Assuming the magnetization is nonuniform only along
the direction of the current, the spin current in Eq. �1� can be
written as

j�x,t� = bJM�x,t� , �2�

where bJ= Pje�B / �eMs�. The spatial variation of the spin
current produces a reaction torque on the magnetization
given by �b��j /�x=bJ�M /�x, which enters the modified
Landau-Lifshitz equation as shown below. As reported in
previous work, both spin-wave and soliton solutions
�7,15,18� are possible for the magnetization M�x , t�, and the
spin current j has a periodic or pulsed form, respectively.

In the present paper, we will investigate the properties of
the spin current j on the background of a periodic solution
corresponding to the soliton solution for the magnetization
on a nonlinear spin-wave background. The paper is orga-
nized as follows. In Sec. II we transform the Landau-Lifshitz
equation into an equation of nonlinear Schrödinger type in
the long-wavelength approximation. By means of the Dar-
boux transformation, the soliton solution for the spin-
polarized current is constructed analytically in Sec. III. In
Sec. IV we discuss the properties of the solution for the
spin-polarized current in detail. Section V is our conclusion.
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II. DYNAMICS OF MAGNETIZATION
IN A FERROMAGNETIC NANOWIRE

The dynamics of the localized magnetization is described
by the modified Landau-Lifshitz equation �7,15� including a
term for the spin-transfer torque,

�M

�t
= − �M � Heff +

�

Ms
M �

�M

�t
+ �b, �3�

where the localized magnetization M�M�x , t�, � is the gy-
romagnetic ratio, � is the Gilbert damping parameter, and
Heff represents the effective magnetic field including the ex-
ternal field, the anisotropy field, the demagnetization field,
and the exchange field. This effective field can be written as
Heff= �2A /Ms

2��2M /�x2+ ��HK /Ms−4��Mz+Hext�ez, where
A is the exchange constant, HK is the anisotropy field, Hext is
the applied external field, and ez is the unit vector along the
z direction. Introducing the normalized magnetization m
=M /Ms, Eq. �3� can be simplified in the dimensionless form

�m

�t
= − �m �

�2m

�x2 � + �m �
�m

�t
+

bJt0

l0

�m

�x

− �mz +
Hext

HK − 4�Ms
��m � ez� , �4�

where the time t and space coordinate x have been rescaled
by the characteristic time t0=1/ ���HK−4�Ms�� and length
l0=�2A / ��HK−4�Ms�Ms�, respectively.

It is obvious that m��mx ,my ,mz�= �0,0 ,1� forms the
ground state of the system, and two types of nonlinear ex-
cited state, i.e., the spin-wave solution and magnetic soliton,
are possible for Eq. �4�. When the magnetic field is high
enough, the deviation of the magnetization from the ground
state is small for the two types of excited state. In this case
we can make a reasonable transformation,

� = mx + imy, mz = �1 − 	�	2. �5�

Substituting the above equations into Eq. �4� we obtain

i
��

�t
= mz

�2�

�x2 − �
�2mz

�x2 − ��mz
��

�t
− �

�mz

�t
� + i

bJt0

l0

��

�x

− �mz +
Hext

HK − 4�Ms
� . �6�

It is easy to get two solutions of Eq. �6�: one is �=0, corre-
sponding to the ground state m= �0,0 ,1�, i.e., j
= �0,0 ,bJMs�, and the other is the bulk spin-wave excitation
�=Ace

i�−kcx+�ct�, corresponding to the periodic spin current

jx = bJMsAc cos�− kcx + �ct� ,

jy = bJMsAc sin�− kcx + �ct� ,

jz = bJMs
�1 − Ac

2, �7�

where kc and �c are the dimensionless wave number and
frequency of the spin wave, and the transverse amplitude
Ac�1. For an attractive interaction nonlinear spin waves in
a ferromagnet with anisotropy lead to macroscopic phenom-

ena, i.e., the appearance of a spatially localized magnetic
excited state �magnetic soliton�.

In the present paper, we want to obtain the soliton solu-
tion of the magnetization on a nonlinear spin-wave back-
ground in a uniaxial ferromagnetic nanowire with spin
torque. However, Eq. �6� is not integrable. For our purpose,
we consider the case without damping and the long-
wavelength approximation �23�, where the dimensionless
wave number kc�1. Keeping only the nonlinear terms of
the order of magnitude of 	�	2�, Eq. �6� can be simplified as
the integrable equation

i
��

�t
=

�2�

�x2 +
1

2
	�	2� − �1 +

Hext

HK − 4�Ms
�� + i

bJt0

l0

��

�x
,

�8�

whose soliton solution on the background of the ground state
�=0 can be obtained by the Hirota method �18,24�. In order
to discuss the properties of the soliton solution on the spin-
wave background, here we use a straightforward Darboux
transformation �25–27� to construct the general expression
for the soliton solution of Eq. �8�, with which the soliton
solution for the spin-polarized current is obtained from Eqs.
�2� and �5�. For this reason, we will consider mainly the
solution of Eq. �8� in the following section.

The main idea of the Darboux transformation is that it
first transforms the nonlinear equation into the Lax represen-
tation, and then by a series of transformations the soliton
solution can be constructed algebraically with the obvious
seed solution of the nonlinear equation. In terms of the
Ablowitz-Kaup-Newell-Segur technique, the Lax representa-
tion for Eq. �8� can be constructed as

�	

�x
= U	 ,

�	

�t
= V	 , �9�

where 	= �	1 	2�T, the superscript T denotes the matrix
transpose, and the Lax pairs U and V are defined by

U = 
�3 + q ,

V = �− i2
2 + 
�1 + �2��3 + ��1 − i2
�q + i� �q

�x
+ q2��3,

�10�

where

�1 =
bJt0

l0
, �2 = i

1

2
�1 +

Hext

HK − 4�Ms
� ,

�3 = �1 0

0 − 1
�, q =

1

2
� 0 �

− �̄ 0
� .

Here 
 is the complex spectral parameter, and the overbar
denotes the complex conjugate. With the natural condition of
Eq. �9�, �2	 / ��x � t�=�2	 / ��t �x�, i.e., �U /�t−�V /�x
+ �U ,V�=0, the integrable Eq. �8� can be recovered success-
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fully. Now, Eqs. �9� and �10� comprise the normal form of
the developed Darboux transformation with which we can
get the general N-soliton solution as shown in the next sec-
tion.

III. DARBOUX TRANSFORMATION

In this section, we briefly introduce the procedure for get-
ting the soliton solution for the developed Darboux transfor-
mation. Consider the following transformation:

	�1� = �
I − K�	 , �11�

where K=S�S−1, �=diag�
1 ,
2�, and S is a nonsingular ma-
trix that satisfies

�

�x
S = �3S� + qS . �12�

We let 	�1� satisfy the Lax equation

�

�x
	�1� = U1	�1� , �13�

where

U1 = 
�3 + q1,

q1 =
1

2
�0 �1

− �̄1 0
� .

With the help of Eqs. �10�–�12�, we obtain the Darboux
transformation from Eq. �13� in the form

�1 = � + 4K12, �14�

which shows that a new solution �1 of Eq. �8� with the seed
solution � can be obtained if K is known.

It is easy to verify that, if 	= �	1 	2�T is an eigenfunc-

tion of Eq. �9� with eigenvalue 
=
1, then �−	̄2 	̄1�T is

also an eigenfunction, but with eigenvalue −
̄1. Therefore, S
and � can be taken in the form

S = �	1 − 	̄2

	2 	̄1

�, � = �
1 0

0 − 
̄1
� , �15�

which ensures that Eq. �12� holds. Then Eq. �14� becomes

�1 = � + 4�
1 + 
̄1�
	1	̄2

	T	̄
, �16�

where 	T	̄= 		1	2+ 		2	2, 	= �	1 ,	2�T. We wish to deter-
mine the eigenfunction of Eq. �9� corresponding to the eigen-
value 
1 for the solution � of Eq. �8�. Thus, by solving Eq.
�9�,we can generate a new solution for j with the help of Eqs.
�2�, �5�, and �8� from an obvious seed solution of Eq. �8�.

To obtain the exact N-order solution, we first rewrite the
Darboux transformation in Eq. �16� as

�1 = � + 4�
1 + 
̄1�
	1�1,
1�	̄2�1,
1�

	�1,
1�T	̄�1,
1�
, �17�

where 	�1,
�= �	1�1,
� ,	2�1,
��T denotes the eigenfunc-
tion of Eq. �9� corresponding to the eigenvalue 
. Then, re-
peating the above procedure N times, we can obtain the exact
N-order solution

�N = � + 4

n=1

N

�
n + 
̄n�
	1�n,
n�	̄2�n,
n�

	�n,
n�T	̄�n,
n�
, �18�

where

	�n,
� = �
 − K�n − 1�� ¯ �
 − K�1��	�1,
� ,

Kl1l2
�n�� = �
n� + 
̄n��

	l1
�n�,
n��	l2

�n�,
n��

	�n�,
n��
T	�n�,
n��

− 
n�
l1l2
.

Here 	�n� ,
� is the eigenfunction corresponding to 
n� for
	n�−1 with 	0�	, and l1 , l2=1 ,2, n�=1,2 , . . . ,n−1, n
=2,3 , . . . ,N. Thus, after choosing a seed as the basic initial
solution, by solving the linear characteristic equation system
�9�, one can construct a set of new solutions from Eq. �18�.

In the following, we take the initial seed solution �
=Ace

i�−kcx+�ct� corresponding to a periodic solution �7�, where
the dispersion relation �c=kc

2−kcbJt0 / l0−Ac
2 /2+ �1

+Hext / �HK−4�Ms�� is obtained from Eq. �8�. After a tedious
calculation for solving the linear equation system �9�, we
have the eigenfunction corresponding to the eigenvalue 
 in
the form

	1 = LC1e�1 +
1

2
AcC2e�2,

	2 =
1

2
AcC1e−�2 + LC2e−�1, �19�

where the parameters C1 and C2 are arbitrary complex con-
stants, and the other parameters are defined by

�1 = −
1

2
i�kcx − �ct� + D�x + 
t� ,

�2 = −
1

2
i�kcx − �ct� − D�x + 
t� ,

L = −
1

2
ikc − D − 
 ,

D =
1

2
��ikc + 2
�2 − Ac

2,


 = − i2
 − kc +
bJt0

l0
. �20�

With the help of the formulas �2�, �5�, �18�, and �19� we can
obtain the desired soliton solution for the spin current.
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IV. PROPERTIES OF THE SOLITON SOLUTION
FOR THE SPIN-POLARIZED CURRENT

Taking the spectral parameter 
=
1��1 /2+ i�1 /2, where
�1 and �1 are real numbers, in Eq. �19�, and substituting into
Eqs. �17� and �5�, we obtain the one-soliton solution for the
spin-polarized current from Eq. �2� as

jx = bJMs�Ac cos � +
2�1

�1
�Q1 cos � − Q2 sin ��� ,

jy = bJMs�Ac sin � +
2�1

�1
�Q1 sin � + Q2 cos ��� ,

jz = bJMs�1 − �Ac +
2�1Q1

�1
�2

− �2�1Q2

�1
�2

, �21�

where

�1 = 2D1Rx + 2�D1
1�Rt + 2x0,

�1 = 2D1Ix + 2�D1
1�It − 2�0,

� = − kcx + �ct , �22�

Q1 = AcL1R cosh �1 + �	L1	2 +
1

4
Ac

2�cos �1,

Q2 = AcL1I sinh �1 + �	L1	2 −
1

4
Ac

2�sin �1,

�1 = �	L1	2 +
1

4
Ac

2�cosh �1 + AcL1R cos �1,

where the subscript R and I represent the real and imaginary
parts, respectively. The other parameters are D1

=��ikc /2+
1�2−Ac
2 /4, L1=−ikc /2−D1−
1, 
1=−i2
1−kc

+bJt0 / l0, x0=−�ln	C2 /C1	� /2, and �0= �arg�C2 /C1�� /2,
where C1 ,C2 are arbitrary complex constants.

The solution �21� describes a one-soliton solution for the
spin-polarized current in a ferromagnetic nanowire embed-
ded in the periodic spin current background �7�. �a� When
�1=0, the solution �21� reduces to the periodic solution �7�.
�b� When the spin-wave amplitude vanishes, namely, Ac=0,
the solution �21� reduces to a solution in the form

jx =
2�1bJMs

cosh �1
cos��1 + �� ,

jy =
2�1bJMs

cosh �1
sin��1 + �� ,

jz = bJMs�1 −
4�1

2

cosh2 �1
, �23�

where

�1 = �1�x + �2�1 +
bJt0

l0
�t +

2

�1
x0� ,

�1 = �1
x − � 1

�1
��1

2 − �1
2� −

bJt0

l0
�t −

2

�1
�0� ,

� = �1 +
Hext

HK − 4�Ms
�t . �24�

The solution �23� is in fact the same as the solution �8� in
Ref. �18�. �One should notice that the transformation �5� is
different from that in Ref. �18�.�

The solution �23� indicates a spatially localized excitation
�28�, which is denoted by the transverse amplitude 2�1 of the
deviation from the ground state j= �0,0 ,bJMs�. The compo-
nents jx and jy precess around the component jz with the
frequency �1=�1

2−�1
2+bJt0 / l0+1+Hext / �HK−4�Ms�, and

the soliton solution is characterized by the width 1/�1 and
the velocity of the soliton center v1=−�2�1+bJt0 / l0�. The
wave number ks,1=−�1 and the frequency �1 of the “carrier
wave” are related by the dispersion law �1=ks,1

2

−ks,1bJt0 / l0−�1
2+1+Hext / �HK−4�Ms�, which shows that the

magnetic field contributes to the precession frequency only.
The magnetic soliton energy is seen to be E1=−bJ

2t0
2 / �2l0�2

−�1
2+1+Hext / �HK−4�Ms�+ 1

2m�v1
2, where the dimensionless

effective mass m� of the soliton is 1 /2.
From Eqs. �23� and �24�, we also see that the term bJ can

change the velocity and the precessional frequency of the
soliton on the background of the ground state j
= �0,0 ,bJMs�. This case confirms the previous studies
�15,18�. However, on the background �7� unusual properties
of Eq. �21� will be described below. The properties of the
envelope soliton solution �21� are characterized by the width
1/ �2D1R�, the wave number ks=−2D1I, the initial center po-
sition −x0 /D1R, and the envelope velocity v1=
−�D1
1�R /D1R. The initial center position of the soliton is
moved x0�2/�1−1/D1R� by the spin wave, which shows a
different way of controlling the soliton in space.

With the expressions of D1 and 
1, we find that the veloc-
ity and the width of the envelope soliton are modulated by
the amplitude Ac and wave number kc of the spin wave as
shown in Fig. 1. From Figs. 1�a� and 1�c�, we see that the
absolute value of the velocity and the width of the envelope
soliton become larger with increasing Ac. Figure 1�b� shows
that the value of kc near −�1 has an obvious effect on the
velocity of the soliton. When kc=−�1, the width of the soli-
ton is maximal, as shown in Fig. 1�d�.

From Eq. �22� we can directly see that, when D1I
1I
=
1RD1R, the parameter �1 depends only on x, which implies
that the envelope velocity −�D1
1�R /D1R becomes zero, i.e.,
the soliton is trapped in space by the nonlinear spin wave. It
should be noted that this condition can be written as

je =
eMs

P�B

l0

t0
�− �1

D1I

D1R
− �1 + kc� , �25�

which is determined by the characteristic velocity l0 / t0, the
amplitude and the wave number of the soliton and the non-
linear spin wave, and the parameter �eMs / P�B�. After a te-
dious calculation, we found that when Ac�kc and �1��1
the condition in Eq. �25� reduces to je�−2�1�l0 /
t0��eMs / P�B�. When the amplitude of the spin wave van-
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ishes, namely, Ac=0, the trapping condition in Eq. �25� re-
duces to je=−2�1�l0 / t0��eMs / P�B�, which is determined by
the characteristic velocity l0 / t0, the soliton wave number �1,
and the parameter �eMs / P�B�. These results show that the
background has almost no effect on the trapping conditions
in the special case Ac�kc and �1��1. For Co3Pt alloy films
�21�, which have high perpendicular anisotropy, we chose
HK=1�104 Oe, A=1.0�10−6 erg/cm, 4�Ms=1�102 Oe,
�=1.76�107 Oe−1 s−1, P=0.35, and the dimensionless pa-
rameters kc=0.05, Ac=0.02, �1=−0.12, and �1=0.1. The
critical electric current trapping the soliton is je=1.867
�104 A/cm2. It is very important to point out that, from
Eqs. �21� and �22� and the expression for 
1, the term bJ
changes not only the velocity but also the frequency, affect-
ing the soliton energy on the background �7�. This property
trapping the soliton in space by the nonlinear spin wave is
characterized by spatial and temporal periods along the di-
rection of soliton propagation x=−�D1
1�Rt /D1R−x0 /D1R

given by ��D1
1�R / �
1I�D1R
2 +D1I

2 �� and �D1R / �
1I�D1R
2

+D1I
2 ��, respectively.
In order to explain some interesting properties of the so-

lution �21�,we discuss the special case kc=−�1 and analyze
two representative situations in detail. �a� The amplitude Ac
exceeds one-half of the transverse amplitude 2�1 of the soli-
ton. �b� The amplitude Ac is less than one-half of the trans-
verse amplitude 2�1 of the soliton �which implies Ac ,�1
�0�.

�a� In the case �1
2�Ac

2, the solution �21� reduces to

jx = bJMs�R1� cos � − R2� sin �� ,

jy = bJMs�R1� sin � + R2� cos �� ,

jz = bJMs�1 − Ac
2 −

�1�Ac cosh �1 cos �1 − �1�
�Ac cosh �1 − �1 cos �1�2 , �26�

where � is given in Eq. �22�, and the other parameters are
determined by

�1 = 4�1�1
2,

�1 = �Ac
2 − �1

2,

R1� = − Ac +
2�1

2 cosh �1

Ac cosh �1 − �1 cos �1
,

R2� = −
2�1�1 sinh �1

Ac cosh �1 − �1 cos �1
,

�1 = �1�1t + 2x0,

�1 = �1�x − v1t − 2�0/�1� . �27�

A simple analysis of Eq. �27� reveals that the solution �26�
is periodic in the space coordinate, denoted by 2� /�1, and
aperiodic in the temporal variable, as shown in Fig. 2. From
Fig. 2 we can see that the background becomes unstable;
therefore the solution �26� can be considered as describing
the modulation instability process �29�. Along the propaga-
tion direction of the soliton, the expression for jz has a maxi-
mum jz=bJMs, i.e., mz=1, at cos �1= �2�1

2−Ac
2� /�1Ac when

0.00 0.01 0.02 0.03 0.04 0.05
9.8
10.0
10.2
10.4
10.6
10.8
11.0
11.2
11.4
11.6

0.234

0.236

0.238

0.240

0.242

0.00 0.01 0.02 0.03 0.04 0.05
-0.252

-0.250

-0.248

-0.246

-0.244

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.27

0.28

0.29

0.30

0.31

0.32

0.00 0.05 0.10 0.15 0.20 0.25 0.30
10.50
10.75
11.00
11.25
11.50
11.75
12.00
12.25
12.50
12.75

W
id
th
of
en
ve
lo
pe
so
lit
on

Spin wave amplitude Ac

(c)

(a)

V
el
oc
ity
of
en
ve
lo
pe
so
lit
on

Spin wave amplitude Ac

V
el
oc
ity
of
en
ve
lo
pe
so
lit
on

Spin wave number kc

(b)

W
id
th
of
en
ve
lo
pe
so
lit
on

Spin wave number kc

(d)

FIG. 1. �Color online� Velocity and width of the soliton solution for spin-polarized current vs the amplitude Ac and wave number kc of
the spin wave. The parameters are �1=0.1, l0=2�10−8 cm, t0=5.7392�10−12 s, and bJ=52 cm/s. �a� Velocity vs amplitude Ac: kc=0.1,
�1=−0.12 �red solid line�; kc=−0.1, �1=0.12 �blue dotted line�. �b� Velocity vs spin-wave number kc; Ac=0.06, �1=−0.15. �c� Width vs
amplitude Ac; kc=−0.1, �1=0.12. �d� Width vs spin-wave number kc; Ac=0.06, �1=−0.15.
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Ac
2 /4��1

2�Ac
2, which shows that these points are not ex-

cited even on the spin-wave background, and it has a mini-
mum jz=bJMs�1− �2�1+Ac�2�1/2 at sin �1=0. When �1

2

�Ac
2 /4, the expression for jz has a maximum jz=bJMs�1

− �2�1−Ac�2�1/2 at �1=0, and a minimum jz=bJMs�1
− �2�1+Ac�2�1/2 at �1=�. These results show that the linear
combined transverse amplitude of the spin wave and mag-
netic soliton can be obtained in these special cases.

�b� In the case �1
2�Ac

2, the solution �21� reduces to

jx = bJMs�R1 cos � − R2 sin �� ,

jy = bJMs�R1 sin � + R2 cos �� ,

jz = bJMs�1 − Ac
2 −

�2��1 − Ac cosh �1 cos �1�
��1 cosh �1 − Ac cos �1�2 , �28�

where

�2 = 4�1�2
2,

�2 = ��1
2 − Ac

2, �29�

R1 = − Ac +
2�2

2 cos �1

�1 cosh �1 − Ac cos �1
,

R2 =
2�1�2 sin �1

�1 cosh �1 − Ac cos �1
,

�1 = �2�x − v1t + 2x0/�2� ,

�1 = − �1�2t − 2�0. �30�

With the expressions �28� and �30�, we can see the main
characteristics of the soliton solution. �1� The soliton has the
same envelope velocity v1=−�2�1+bJt0 / l0� on both the
background of the periodic spin current in Eq. �7� and the
ground state background j= �0,0 ,bJMs�. �2� The amplitude
of jz in Eq. �28� has a temporal periodic oscillation as shown
in Fig. 3. A detailed calculation shows that the amplitude of
jz in Eq. �28� has a minimum at �1=0, which is given by

jz = bJMs�1 − Ac
2 −

4�1��1
2 − Ac

2�
�1 − Ac cos �1

, �31�

and has a maximum

jz = bJMs�1 −
�1

2Ac
2 sin2 �1

�1
2 − Ac

2 cos2 �1

, �32�

at cosh �1=2�1 / �Ac cos �1�− �Ac cos �1� /�1. Figure 4�a�

FIG. 2. Evolution of solution �26� with conditions kc=−�1, �1
2

�Ac
2. Parameters are �1=0.12, �1=−0.1, Ac=0.16, bJ=34.8 cm/s,

l0=2�10−10 m, t0=5.7392�10−12 s, x0=−1.27, and �0=0. The
spin current jz is in units of bJMs, here and in Figs. 3 and 4.

FIG. 3. Evolution of solution �28� with the conditions kc=−�1

and �1
2�Ac

2. Parameters are �1=0.1, �1=−0.08, Ac=0.06, bJ

=41.8 cm/s, l0=2�10−10 m, t0=5.7392�10−12 s, x0=3, and �0

=0.
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FIG. 4. �a� Evolution of the minimum amplitude of jz in Eq.
�31� �dashed line�, the maximum amplitude of jz in Eq. �32� �dotted
line�, and the background amplitude of jz �solid line� in Eq. �7�. �b�
Location of the minimum amplitude �solid line� and the maximum
amplitude �dotted line� in the time–propagation-distance plane. The
parameters are the same as in Fig. 3.

LI et al. PHYSICAL REVIEW E 76, 026605 �2007�

026605-6



presents the evolution along the propagation direction of the
minimum and maximum intensities given by Eqs. �31� and
�32� �see, respectively, the dashed and dotted lines�, and the
spin-wave intensity �solid line�. The location of the mini-
mum and maximum amplitudes �solid and dotted lines, re-
spectively� in the time-space plane is shown in Fig. 4�b�.
From Fig. 4, it is seen that the narrower the soliton, the
sharper the peak and the deeper the two dips at the wings of
the soliton. This feature illustrates the characteristic breather
behavior of the soliton as it propagates on the background of
a periodic solution for the spin current in a ferromagnetic
nanowire.

V. CONCLUSION

In summary, by transforming the modified Landau-
Lifshitz equation into an equation of nonlinear Schrödinger
type, we study the interaction of a periodic and a one-soliton
solution for the spin-polarized current in a uniaxial ferro-
magnetic nanowire. Our results show that the amplitude of

the soliton solution has a spatial and temporal period on the
background of a periodic spin current. The effective mass of
the soliton is obtained. Moreover, we found that the soliton
can be trapped only in space. We also analyze the modulation
instability and dark soliton on the background of a periodic
spin current. This soliton solution shows the characteristic
breather behavior of the soliton as it propagates along the
ferromagnetic nanowire.
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