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We investigate disordered graphene with strong long-range impurities. Contrary to the common belief

that delocalization should persist in such a system against any disorder, as the system is expected to be

equivalent to a disordered two-dimensional Dirac fermionic system, we find that states near the Dirac

points are localized for sufficiently strong disorder (therefore inevitable intervalley scattering) and the

transition between the localized and delocalized states is of Kosterlitz-Thouless type. Our results show

that the transition originates from bounding and unbounding of local current vortices.
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It is well known that the electronic spectrum of graphene
can be approximately described by Dirac fermions [1–5],
due to the linear dispersion relation near two inequivalent
pointsK andK0 at the corner of the Brillouin zone [4]. The
relativistic dispersion gives rise to several remarkable phe-
nomena. Unlike nonrelativistic Schrödinger fermions in
two dimensions [6], Dirac fermions cannot be trapped by
a barrier due to the Klein paradox [7]. Theories based on
the two-dimensional (2D) single valley Dirac Hamiltonian
also predict that Dirac fermions cannot be localized by
disorder [2,8–10].

Most of the experimental and theoretical studies of
graphene [3,11] have focused on the effect of the relativ-
istic electronic dispersion on different phenomena such as
Landau level structure or quantum Hall ferromagnetism.
However, the validity of single valley Dirac fermion pic-
ture for disordered graphene is only approximate and relies
on two premisses: (i) The spatial range of the impurities is
long enough to avoid intervalley scattering effectively [2]
(strong intervalley scattering can lead to localization
[2,12,13]); (ii) Even within a single valley, the (linear
dispersed) Dirac Hamiltonian is only valid near Dirac
points K and K0. The approximation cannot be carried
out in a region with a strong impurity where the deviation
from the Dirac point is large enough so that higher order
corrections to the energy spectrum become relevant [2].
Therefore, the application of single valley Dirac
Hamiltonian to disordered graphene is limited to weak
long-range impurities. Indeed, localized states in disor-
dered graphene near Dirac points have been observed
experimentally [14] and numerically [15,16]. All the above
beg the physical question: how does graphene behave in
the presence of strong long-range impurities?

In this Letter, we calculate the scaling properties of
disordered graphene with long-range impurities in the
framework of a tight-binding model and finite-size scaling.
Instead of delocalization we find that, in the presence of

strong long-range impurities, states near the Dirac points
are localized. Localization arises from enhanced interval-
ley scattering due to the deviation from Dirac dispersion in
the strong impurity regime. We show numerical evidence
for a marginal metal (scaling function � ¼ 0) to insulator
transition (MIT) as a function of the disorder strength and
chemical potential. On the delocalized (marginal metallic)
side, we find that the conductance is independent of the
system size, which is a characteristic of the Kosterlitz-
Thouless (K-T) [17] type transition in conventional 2D
systems with random magnetic field [18,19]. We explicitly
probe the Kosterlitz-Thouless transition nature of the MIT
by identifying the bounding and unbounding vortex-anti-
vortex local currents in the system.
The � electrons in graphene are described by the tight-

binding Hamiltonian (TBH)

H ¼ X
i

Vic
y
i ci þ t

X
hi;ji

ðcyi cj þ H:c:Þ; (1)

where cyi (ci) creates (annihilates) an electron on site iwith
coordinate ri, t (�2:7 eV) is the hopping integral between

the nearest neighbor carbon atoms with distance a=
ffiffiffi
3

p
(a� 2:46 �A is the lattice constant), and Vi is the potential
energy. In the presence of disorder, Vi is the sum of con-
tributions from NI impurities randomly centered at frmg
among N sites Vi ¼

PNI

m¼1 Um expð�jri � rmj2=ð2�ÞÞ,
where Um is randomly distributed within (�W=2, W=2)
in units of t. Different random configurations of graphene
samples with same size, �,W and ni � NI=N constitute an
ensemble with definite disorder strength. This model of
disordered graphene has been widely used [20–22].
At zero temperature, the two terminal dimensionless

conductance gL of the sample at Fermi energy EF is given
by Landauer-Büttiker formula [23]: gLðEFÞ ¼ 2TrðttyÞ,
where t is the transmission matrix and the factor 2 accounts
for spin degeneracy. This equation can be numerically
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evaluated by recursive Green’s function method [24] for
systems with rather large size. For the purpose of scaling,
the contact effect should be subtracted from gL to yield
the ‘‘intrinsic conductance’’, g, defined as 1=g ¼ 1=gL �
1=ð2NCÞ, where NC is the number of propagating channels
at Fermi energy EF and 1=ð2NCÞ is the contact resistance
[25]. The conductance g then receives contributions solely
from the bulk and thus has the same scaling property as if it
were obtained by the transfer matrix method [26]. The
scaling function [6,26]

� ¼ dhlngi
d lnL

; (2)

h. . .i being the average over random ensemble, is used to
determine the localization properties; �< 0 and �> 0
correspond to the insulator and the metal, respectively.

We plot the size dependence of hlngi with � ¼ 1:73a,
nI ¼ 1%, for different EF andW in Fig. 1. The samples are
set to be square shaped with length L. Periodic boundary
conditions in the transverse direction are adopted to ex-
clude the edge states of the zigzag edges [21]. The poten-
tial range � chosen here was supposed to be ‘‘long range’’
enough [2,21], and the scaling �=Lx � 0 is irrelevant.
When EF < Ec ¼ 0:1t [Fig. 1(a)] or W >Wc ¼ 2t
[Fig. 1(b)], hgi is monotonically decreasing with increasing
L, which means the wave functions are localized.
Otherwise, when EF > Ec ¼ 0:1t [Fig. 1(a)] orW <Wc ¼
2t [Fig. 1(b)], hlngi curves for different sizes merge, sug-
gesting a delocalized state with finite conductance in the
thermodynamic limit. However, they are not real metals
with �> 0. All the states with W 2 ð0; WcÞ are within the
MIT region with � ¼ 0. Even in the cases of extremely
weak disorder withW ¼ 0:25t andW ¼ 0:1t [see the inset
of Fig. 1(b)], except for a vanishing even-odd fluctuation,
hlngiðLÞ does not seem to show a tendency to be increasing
nor decreasing. In Fig. 2, the universal �ðlngÞ is plotted
from the same data in Fig. 1, showing a critical conduc-
tance lngc � 0:4 separating the delocalized states with

� ¼ 0 and localized states with �< 0. Approaching lngc
from insulating side, the localization length diverges as
� ¼ �0jW �Wcj��, where � ¼ 4 is equal to the inverse of
the slope of �ðlngÞ at ( lngc � 0) [26,27]. This phenome-
non corresponds to a disorder-driven K-T type transition
that has been observed in many disordered 2D systems
[18,19,28]. As can be seen from Fig. 1(a) and the phase
diagram (inset of Fig. 2), states in the low energy region are
more easily localized.
The localization near the Dirac point is in contrast to the

belief that Dirac fermions are robust against localization,
especially in the presence of long-range impurities. In
order to gain insight in the nature of the localization
transition, we first turn back to the dispersion structure of
realistic graphene.

E�ðqÞ¼�3ta

2
jqj�

ffiffiffi
3

p
ta2

8
sinð3�ðqÞÞjqj2þOðq3Þ; (3)

where q � k�K and �ðqÞ 2 ½0; 2�Þ is the angle of
vector q. The first term in the right-hand side of (3)
corresponds to the Dirac Hamiltonian, but nonlinear terms
will be prominent when q (or E) is increased. For example,
the angular dependence factor sinð3�ðqÞÞ (‘‘trigonal warp-
ing’’) breaks pseudotime reversal symmetry [5,10,21] re-
stricted to each valley. When jEj> t, the linear approxi-
mation and double-valley structure collapses completely
[see Figs. 3(g) and 3(h)]. Thus strong local potential of
impurities might create non-Dirac scattering, which will
lead to a tendency towards localization.
Now consider the simplest case of a single long-range

impurity in the center of a graphene sheet. If intervalley
coupling is effectively prohibited and the regime of Klein
tunneling holds, there should be no bound states, no matter
how high the potential barrier is [7]. After diagonalizing
the Hamiltonian for a graphene sheet with N sites, the

spatial extension of eigenstate jc ni ¼ PN
i¼1 anic

y
i j0i with

eigenenergy En can be characterized by the participation
ratio
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FIG. 1 (color online). The scaling of conductance for long-
range disorder (� ¼ 1:73a, nI ¼ 1%): (a) hlngi as functions of
the Fermi energy EF with fixed disorder strength W ¼ 2t (note:
the bandwidth is 6t); (b) hlngi as functions of disorder strength
W with fixed Fermi energy EF ¼ 0:1t. The insets are the same
data plotted as functions of size L. Each hlngi is an average over
100� 400 random realizations.
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FIG. 2 (color online). The scaling function � ¼ dhlngi
d lnL obtained

from the data in Fig. 1. The inset is the schematic phase diagram
for � ¼ 1:73a, nI ¼ 1%.
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Rn ¼
�XN
i¼1

a2ni

�
2
��

N
XN
i¼1

a4ni

�
: (4)

For an extended state, R has a finite value (typically close
to 1=3 in the presence of disorder), whereas for a localized
state R approaches zero proportional to (1=N) [29]. The
results for � ¼ 1:73a with different potential height V � 0
is plotted in Fig. 3. For small V [Fig. 3(a) and 3(b)], where
the electronic behaviors inside and outside the barrier are
Dirac-like [Fig. 3(e) and 3(f)], there are no bound states.
When V is increased, bound states with small R begin to
appear in the negative energy region near the Dirac point,
as seen in Fig. 3(c). For positive injected energy [orange
arrow with solid line in Fig. 3(g)], the electron is not far
fromK both inside and outside the barrier, so the regime of
Klein tunneling is still valid and the electron cannot be
trapped. On the other hand, for negative energy [orange
arrow with dashed line in Fig. 3(g)], the electron sees a
non-Dirac barrier (pointed by the yellow arrow). This
causes strong non-Dirac scattering and localization around
the impurity. When V is increased further [Fig. 3(h)], even
electrons in the positive Dirac region will encounter strong
non-Dirac scattering in the barrier and will be localized
[Fig. 3(d)]. Note here when EF < 0 [the orange arrow in

Fig. 3(h)], the two valleys in the barrier merge, causing a
possibility of remarkable intervalley scattering (see be-
low). For negative V (not shown here), all the results are
similar, except that the localized states now first appear in
the positive region near Dirac point. The states near the
Dirac point with low density of states will be more sensi-
tive to disorder and will be localized first, as in the case of
conventional disordered systems [24–26].
This localization induced by long range but strong im-

purities is directly correlated with intervalley scattering.
The valley-resolved scattering amplitude A can be calcu-
lated by a generalization of Ando’s method [30]. The sum
of all the scattering amplitudes is equal to the propagating
channels at Fermi energy EF: NC ¼ Aintra þ Ainter. The
results are shown in Fig. 4. It is clear now that the local-
ization observed in Fig. 1 (W > 2) and Fig. 3 (V > 1) is
induced by remarkable impurity-assisted intervalley scat-
tering, which is consistent with theoretical prediction that,
this type of scattering will lead graphene into the common
regime of Anderson localization [12]. For a strong enough
impurity barrier (V > t), this intervalley scattering is a
result of non-Dirac behavior of the honeycomb lattice in
the high energy region and cannot be avoided by simply
increasing the potential range �.
One question remains: Why is the MIT in disordered

graphene of K-T type? The K-T transition is a typical
topological transition which has been understood as un-
bounding of vortex-anti-vortex pairs [17]. For instance, in
the high temperature phase 2D XY model, a plasma of
unbounded vortices and antivortices of local spins gives
rise to an exponential decay of spin correlation function; in
the low temperature phase, vortices and antivortices are
bound to each other, leading to a power law correlation
function. This can be clearly seen in the present problem if
the local currents are identified with local spins in XY
model.
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FIG. 3 (color online). Left column [(a)–(d)]: The participation
ratio R as functions of energy E for a graphene with N ¼ 70�
40, in the presence of a single impurity at the center with � ¼
1:73a with different potential height V � 0. Right column [(e)–
(h)]: Schematic diagrams of scattering process corresponding to
their left counterparts. The electron is injected from the left,
scattered by the barrier at the center and eventually transmitted
to the right (thick orange arrows). The red lines mark the Dirac
dispersion E�ðkÞ ¼ � 3ta

2 jk�Kj and the olive part is that for

graphene calculated from TBH. Note the discrepancies between
them at high energy.
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FIG. 4 (color online). The normalized scattering amplitudes
Aintra=NC and Ainter=NC as functions of W. Each point is an
average over 100 samples on a square graphene sheet with 112�
64 sites. Other parameters are same with Fig. 1(b). The inset is
the results corresponding to the single-impurity case in Fig. 3 at
EF ¼ 0.
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The bond current vector il!mðEFÞ per unit energy point-
ing along the bond between sites l and m can be calculated
using Green’s functions [23,31,32]. It is more convenient
to investigate the ‘‘current flow vector’’ il ¼

P
mil!m de-

fined on site l, where the vectorial summation is taken over
the nearest neighbors of site l [31]. The current flow il is a
vector with angle �l 2 ½0; 2�Þ. The topological charge n of
local currents on a closed path can now be defined as usual:
n ¼ 1

2�

Hr� � dl. In Fig. 5, typical distributions of local

currents on both sides ofMITare plotted. As expected from
the K-T picture, in the delocalized phase [Fig. 5(a)], vor-
tices (n > 0) and antivortices (n < 0) are closely bounded,
corresponding to the ‘‘low temperature’’ phase of 2D XY
model with quasi-long-range correlations. In the localized
phase [Fig. 5(b)], there are a large number of current
vortices and antivortices. Many of them are unbounded,
corresponding to the ‘‘high temperature’’ phase of 2D XY
model without long-range correlations. This offers an ex-
plicit picture of the microscopic origin of the disorder-
driven K-T transition in graphene.

In conclusion, we find a Kosterlitz-Thouless type mar-
ginal metal-to-insulator transition as a function of disorder
strength or Fermi energy in disordered graphene with
strong long-range impurities. We explicitly demonstrate
the KT nature of transition by showing the bounding and
unbounding of local current vortexes. Recently, the MIT
near the neutral point of graphene has been observed in
graphene nanoribbons [14] which are quasi-one-
dimensional systems. Our results can be tested in experi-
ments with large nanoribbon radius.
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(b) FIG. 5 (color online). Typical configu-
rations of local currents in (red arrows)
and potential Vn (color contour) on two
sides of K-T type MIT with N ¼ 56�
32 sites, � ¼ 1:73a, nI ¼ 1% and EF ¼
0:1t. (a) W ¼ 1:1t (delocalized);
(b) W ¼ 2:9t (localized). The size of
arrows is proportional to the logarithm
of current value. Carbon hexagons with
topological charge n � 0 are marked
explicitly with blue numbers.
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