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Adiabatic Dynamics of Local Spin Moments in Itinerant Magnets
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Using the adiabatic approximation, we derive the equations of motion for local spin moments which
are valid for itinerant as well as tight-binding spins. Material parameters in the equations of motion
can be obtained using standard density functional methods, because they depend only on the energy
and Berry phase of the constrained ground state of frozen spin configurations. For the calculation
of spin waves in a collinear magnet, it is sufficient to know the quadratic forms of total energy and
spin component along the symmetry axis as functions of the spin deviations from the ground state
configuration.
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Historically, there have been two opposing points of
view of magnetism [1]: The atomic moment picture of
Heisenberg and the itinerant electron picture of Bloch
and Stoner. Because of its conceptual simplicity, the
Heisenberg model has enjoyed a dominant position in
the theory of magnetism, despite the tremendous success
of the itinerant picture for transition metals. There have
also been steady and serious efforts trying to push the
atomic moment picture beyond its obvious domain of
validity [2,3]. Recently, it has been proposed to use
such local moments to formulate large amplitude spin
dynamics which are needed for finite temperature effects
on magnetism [4].

In this Letter, we show that while it is still pos-
sible to define local moments for itinerant spins, the
usual Landau-Lifshitz equations for the moments must be
replaced by more accurate equations of motion. This we
establish purely based on the adiabatic assumption of the
local moments with respect to the system’s other degrees
of freedom. For collinear magnets, the Berry curvatures
involved in the equations of motion are shown to describe
how the total spin component along the symmetry axis
changes due to spin deviations from the ground state con-
figuration. A simple formula for the spin wave spectrum,
previously derived for ferromagnets in either the free or
tight-binding limits, is now shown to be valid everywhere
between these limits and for all collinear magnets.

Adiabatic dynamics of the local moments.—Following
the usual practice, we partition the space into spin cells of
volume Vj [5]. There is some empirical knowledge as to
how to choose the partition effectively, but one does not
have to assign one cell for each atom. We concentrate
first on how to derive the best set of equations of motion
in the adiabatic limit for a given partition. The spin for a
cell is defined as sj � �cjŝjjc�, where ŝj �

R
Vj

d3r ŝ�r�,
and ŝ�r� is the spin density operator. (In this Letter, we
use the convention that spin angular momenta have an
extra factor of h̄ beside s.) Let jc�s�� be the lowest
energy state of the electronic system which yields a given
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spin configuration denoted by �s�. Using a similar method
as in [6], we find
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where a labels the spin components, E is the energy of
the constrained ground state, and the V matrix elements
(Berry curvatures [7]) are defined as
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Therefore, the adiabatic dynamics of the spin moments

is completely determined from the energy and the Berry
curvatures of the constrained ground state. These quan-
tities can be extracted using standard density functional
methods [8], which are simpler and thus more practi-
cal than methods based on the linear response or time-
dependent density functional theory [9]. There has already
been much work on the calculation of the energy [5], and
one also has a few tricks to extract the Berry curvatures
[6]. For spin wave calculations, the Berry curvatures are
needed only at the ground state, and we will show in this
Letter that there is a powerful method to extract them when
the spin ground state has an axial symmetry.

The equations of motion (1) are exact in the adiabatic
limit [10] for a given partition of the space into cells,
and are valid beyond the harmonic approximation or
linear response. Based on the variational nature of the
theory, the local moment description of the spins becomes
better for finer partition of the space, simply because
more degrees of freedom are included in the variational
wave function [11]. There is nothing intrinsically wrong
with the local moment description of itinerant spins;
the specification of local moments for every point of
space becomes equivalent to the description of spin
configuration in terms of its Fourier components as used
in [6].

The Landau-Lifshitz equations.—In the special situ-
ation of tight-binding or rigid spins, the wave function
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jc�sj�� is obtained from the absolute ground state of spin
configuration s0

j by rigidly rotating the spins within each
cell, i.e.,

jc�sj�� �
Y

j

ei �uj ?ŝj jc0� , (3)

where �uj is in the direction of s0
j 3 sj and has a

magnitude given by the angle between sj and s0
j . The

spin operators ŝj are for the total spin in each cell, and
they satisfy the usual commutation relations for angular
momenta, i.e., �ŝa

j , ŝa0

j0 � � idjj0eaa0b ŝ
b
j , where eabg is

the fundamental antisymmetric tensor. Then, the Berry
curvatures can be calculated as

Vaa0

jj0 � djj0e
aa0bs

b
j ��sj�2, (4)

which says that there is no Berry curvature between
different cells, and that the Berry curvature within a single
cell is given by that of a rigid spin [12]. With this form of
the Berry curvature, our general equations of motion (1)
reduce to the classical Landau Lifshitz equations

h̄�sj � sj 3
≠E
≠sj

. (5)

However, the wave function (3) is not the constrained
ground state for the given spin configuration in general.
The Landau-Lifshitz equations can thus fail for itinerant
spins, or when the local moments interact with itinerant
electrons [13]. There are at least two ways that inter-
moment Berry curvatures arise and thus invalidate the
Landau-Lifshitz equations. (i) In the presence of elec-
tron hopping, the moments at different sites may share the
same spin and thus have Berry curvatures between them.
(ii) Additional Berry phases may arise due to the adiabatic
following of the neglected degrees of freedom to the local
moments.

To illustrate point (i), we have solved exactly a t 2

J 2 B Hamiltonian on two sites,
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where ajs is the destruction operator on site j and
spin state s. When there are two electrons present in
the system, there are six different states, four with one
electron on each site and two with both electrons on either
site. A uniform magnetic field, Bj � Bẑ, is added to
select a direction of magnetization for the ferromagnetic
ground state, and our final results have a well defined limit
as B ! 0. There are six eigenstates consisting of a triplet
with energies 2J 2 B, 2J, and 2J 1 B, and of three
singlets with energies at 0 and 3

2 J 6 �� 3
2 J�2 1 �2t�2�1�2.

If the hopping energy is not too large (t2 , J2 1 5BJ 1

B2), the ground state is one of the triplet, in which the
average spin on each site is in the z direction with the full
magnitude of 1�2.

The average spins are tilted when small transverse
fields are added to the system. The new ground state can
208
be calculated perturbatively, from which the Berry curva-
tures at Bj � Bẑ are extracted exactly. The calculations
are tedious but straightforward, and we have obtained the
following simple results:
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�J 1 B�2 , (6)

V
xy
12 � V

xy
21 �

t2

�J 1 B�2 , (7)

where the xx and yy components all vanish because of the
rotational symmetry about the spin z axis. These results
clearly demonstrate the effect of intersite hoppings. When
t is zero, we go back to the original results of the tight-
binding limit. When t is nonzero, not only the on-site
Berry curvature is modified, but also an intersite Berry
curvature is induced.

To illustrate point (ii), we consider the three spin model
H � 2J�s1 ? s2 1 s2 ? s3� 2 B�sz

1 1 sz
2 1 sz

3�. Two of
these spins (1 and 3) will be taken into account in the
definition of the local moments, and the other simulates
a neglected degree of freedom such as an orbital moment
or an interstitial spin pocket. The eigenstates consist of
a quartet with energies 22J 6 2B and 22J 6 B, and of
two doublets with energies 6B and 4J 6 B, respectively.
For ferromagnetic coupling �J . 0�, the ground state is
one of the quartet, with all the spins fully in the z direction
�B . 0�. We apply small transverse fields on spins 1 and
3 (leaving spin 2 free), causing transverse deviations of
the spins in the new ground state. The Berry curvatures
with respect to the transverse components of spins 1 and
3 are then calculated, with the results
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�B 1 2J�2 , (8)
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Significance of the Berry curvatures.—A transparent
physical picture for the Berry curvatures can be obtained
if we confine our attention to the case of ground states
with rotational symmetry of the spins about an axis.
This includes the usual ferromagnets, ferrimagnets, and
antiferromagnets, but excludes canted or spiral magnetic
structures. No translational symmetry will be assumed
except in a special discussion. The Berry curvatures will
be related to the reduction of the total spin z component
due to the excitations of the spins, and a simple formula
for the frequency dispersion will be obtained.

Let the symmetry axis of the ground state be the z
direction, then the xy spin components due to a spin wave
eigenmode can be written as [14]

s�
j � Re�e2ivt�x̂ 1 iŷ�sj� , (10)

where sj is the amplitude (complex) on the jth site. Using
the complex amplitudes in Eq. (10) as the independent
variables, we can obtain the same set of equations of



VOLUME 83, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 5 JULY 1999
motion as in Eq. (1), except that the upper indices now
refer to the real and imaginary parts of the amplitudes. By
linearizing the energy gradient and writing Kaa0

jj0 for the
second derivative of the energy with respect to sa

j and sa0

j0 ,
we obtain the eigenmode equations asX

j0
�ih̄vVjj0 1 Kjj0�sj0 � 0 , (11)

where Vjj0 � V
11
jj0 2 iV12

jj0 , and Kjj0 � K11
jj0 2 iK12

jj0 .
Therefore, once we know the K and V matrices, the

above equations of motion determine the spin wave spec-
trum and the associated eigenmodes. It is easy to see that
the quadratic form 1

2 syKs � 1
2

P
jj0 s�

j Kjj0sj0 represents
the energy DE for creating the spin excitations �sj	. The
diagonal element Kjj can thus be extracted from the energy
increase in the system when only a single spin sj is excited.
The off-diagonal elements Kjj0 and Kj0j � K�

jj0 � j fi j0�
can be obtained from the energy increase when two spins
are excited. How about the V matrix? In the follow-
ing, we will show that 2i 1

2 syVs � 2i 1
2

P
jj0 s

�
j Vjj0sj0

is, in fact, the quadratic form for the reduction, DSz �
S0

z 2 �Ŝz�, of the total spin z component of the ground
state due to the spin excitations, i.e.,

2i
1
2

syVs � DSz . (12)

This relation then allows a simple evaluation of the V

matrix in a similar manner as for the K matrix, and it is not
necessary to invoke directly the constrained ground state
wave functions, which are usually much harder to obtain
than the spin expectation values.

That the relation (12) is valid for all collinear magnets
can be easily seen in the tight-binding limit. The spin
configuration of a collinear magnetic ground state may be
written as sj � s0

j ẑ, where s0
j can be positive (ferromag-

net) or take both signs (ferrimagnets or antiferromagnets).
The total reduction of the spin-z component due to a spin
wave (10) is just DSz � 1

2

P
j jsjj

2�s0
j . The same result

is obtained from the left-hand side of Eq. (12), if we use
Vjj0 � 2iV12

jj0 � iV
xy
jj0 � idjj0�s0

j �21, which is justified
according to Eq. (4) and from the rotational invariance of
the ground state about the z axis.

To establish the relation (12) beyond the tight-binding
limit, we first show that i 1

2syVs is actually a Berry phase
in the complex plane of the overall amplitude of the spin
wave. Let us write sj � ARj , where A � A1 1 iA2 is
the overall amplitude, and Rj � R1

j 1 iR2
j are the relative

amplitudes which are regarded as known and fixed. The
Berry curvature at the origin of the complex A plane is
given by
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(13)

The derivatives can be transferred to those with respect to
the sj variables, with the result
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where we have used the relations V
11
jj0 � V

22
jj0 and V

12
jj0 �

2V
21
jj0 , due to the rotational symmetry of the ground state.

On the other hand, by expanding in terms of the real and
imaginary parts of A and Rj , we find that i 1

2syVs is just
1
2 jA j2 times the expression (13), or the Berry phase around
a small loop of area 1

2 jA j2.
Next we show that this Berry phase is, in fact, equal

to the reduction of the total spin-z component. Consider
a circular wedge of radius jAj and angle f. The Berry
phase around the sides of this wedge is just VA (13) times
the area 1

2f jA j2. It can also be calculated directly as the
phase of �cjcf�, where jc� is the constrained ground state
for the case of A1 � jAj, A2 � 0, while jcf� is for A1 �
jAj cosf, A2 � jAj sinf. Here we have taken the phase
convention of wave functions such that their overlaps with
the ground state are real and positive. Because a phase
rotation of the amplitude A is equivalent to a rotation
of the total spin about the z axis, we may write jcf� �
eif�Ŝz2S0

z �jc�, where, in order to be consistent with the
above phase convention, we have subtracted from Ŝz its
expectation value S0

z in the ground state. For sufficiently
small f, we may expand the exponential of the spin
rotation operator, and find that the Berry phase along the
wedge is equal to f��Sz� 2 S0

z � as desired.
A simple formula for the spinwave spectrum.—Multi-

plying s�
j on the terms of Eq. (11), and summing over j,

we find that the eigenfrequency can be expressed as

h̄v �
1
2 syKs

2i
1
2 syVs

�
DE
DSz

, (14)

where we have used the relations of the quadratic forms of
the K and V matrices to the energy increase and spin-z re-
duction of the ground state due to the spin excitations [15].
This was obtained by Niu and Kleinman [6] for the spe-
cial cases of ferromagnets in the jellium and tight-binding
limits. It is now shown to be valid everywhere between
those limits, and to be valid for all collinear magnets in-
cluding ferrimagnets and antiferromagnets. Because our
derivation does not depend on how the space is partitioned
into cells, this formula is an exact result of the adiabatic
limit and the axial symmetry of the ground state.

There is, in fact, a deep connection between the
above simple formula and the quantum theory of spin
waves. According to the latter, the energy of a magnon
(the spin wave quantum) is just h̄v, and there is a
single spin flip from the ground state per magnon in
a ferromagnet. The above formula simply says that the
magnon energy is given by the energy of the spin wave
divided by the number of magnons in the spin wave.
Interestingly, the connection also applies to ferrimagnetic
and antiferromagnetic spin waves. In the latter case,
the ground state magnetization Sz

0 is zero, but �Ŝz� is
209
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finite in a spin wave of the form (10) [14]. This can be
verified directly from the classical spin wave solutions of
the Heisenberg model [16]. The fact that the spectrum
goes linearly with k at small k is explained by the
observation that �Ŝz�, which enters the denominator of
the formula (14), vanishes linearly as k ! 0. Quantum
mechanically [16], the z component of the total spin,
which is a good quantum number, has eigenvalues of 61
in each degenerate subspace of one-magnon states, where
the negative eigenvalue corresponds to a spin wave of the
form (10), while the positive eigenvalue corresponds to
a spin wave of the opposite chirality.

The formula (14) can also be used to evaluate the spin
wave spectrum. Suppose, for instance, the cell spins in
the ground state form a Bravais lattice; then one knows
the spin wave eigenmode for each wave vector purely
based on the translational symmetry of the system. All
one needs to do is to calculate the energy increase due
to the presence of the spin wave and the corresponding
reduction of the total spin z component, and take the
ratio of the two. This method has been used implicitly by
Halilov et al. [5] and explicitly by Brown et al. [18] for
the evaluation of spin wave spectra of the ferromagnets
of crystalline Ni, Co, and Fe.

The only approximation in this method is the assump-
tion of adiabaticity regarding the motion of the cell spins
relative to the rest of the degrees of freedom in the
system. One type of such degrees of freedom are spin
fluctuations within each cell, and they become important
when there are more than one atom per cell. In such a
case, one should take a finer partition of space for accu-
racy, and pay the price of not being able to know the spin
wave eigenmodes based on symmetry arguments alone.
One may still use the formula (14) to calculate the spin
wave spectrum variationally based on trial spin wave
configurations. Of course, one can always use Eq. (11)
or even (1) to obtain the spectrum systematically.
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