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Dynamics of a Bright Soliton in Bose-Einstein Condensates with Time-Dependent Atomic
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We present a family of exact solutions of the one-dimensional nonlinear Schrödinger equation which
describes the dynamics of a bright soliton in Bose-Einstein condensates with the time-dependent
interatomic interaction in an expulsive parabolic potential. Our results show that, under a safe range of
parameters, the bright soliton can be compressed into very high local matter densities by increasing the
absolute value of the atomic scattering length, which can provide an experimental tool for investigating
the range of validity of the one-dimensional Gross-Pitaevskii equation. We also find that the number of
atoms in the bright soliton keeps dynamic stability: a time-periodic atomic exchange is formed between
the bright soliton and the background.
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With the experimental observation and theoretical stud-
ies of Bose-Einstein condensates (BECs) [1], there has
been intense interest in the nonlinear excitations of the
atomic matter waves, such as dark [2] and bright solitons
[3–6]. It is believed that atomic matter bright solitons are
of primary importance for developing concrete applica-
tions of BECs in the future, so it is of interest to develop
a new technique which allows us to construct a particular
soliton with the assumed peak matter density. One possi-
bility is to vary the interatomic interaction by means of
external magnetic fields. Recent experiments have demon-
strated that the variation of the effective scattering length,
even including its sign, can be achieved by utilizing the so-
called Feshbach resonance [7]. This offers a good oppor-
tunity for manipulation of atomic matter waves and non-
linear excitations in BECs [8,9]. In Ref. [10], it has been
demonstrated that the variation of nonlinearity of the
Gross-Pitaevskii (GP) equation via Feshbach resonance
provides a powerful tool for controlling the generation of
bright and dark soliton trains starting from periodic waves.
Besides, a sinusoidal variation of the scattering length has
also been used to form patterns such as Faraday waves
[11], or as a means to maintain BECs without an external
trap in two dimensions [12].

In this Letter, we present a thorough analysis of the
dynamics of a bright soliton of BECs with time-varying
atomic scattering length in an expulsive parabolic poten-
tial. Our study is greatly facilitated by the so-called
Darboux transformation [13], by which we can directly
construct the exact solutions of a 1D nonlinear Schrödinger
equation (NLSE). Under a safe range of parameters, the
bright soliton in BECs can be compressed into very high
local matter densities by increasing the absolute value of
atomic scattering length with Feshbach resonance. During
the compression of the bright soliton in BECs, the number
of atoms in the bright soliton keeps dynamic stability and
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the exchange of the atoms between the bright soliton and
the background of density exists.

At the mean-field level, the GP equation governs the
evolution of the macroscopic wave function of BECs. In
the physically important case of the cigar-shaped BECs, it
is reasonable to reduce the GP equation into a 1D NLSE
[5,14,15],
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In Eq. (1), time t and coordinate x are measured in units
2=!? and a?, where a? � � �h=m!?�

1=2 and a0 �

� �h=m!0�
1=2 are linear oscillator lengths in the transverse

and cigar-axis directions, respectively. !? and !0 are
corresponding harmonic oscillator frequencies, m is the
atomic mass, and � � 2j!0j=!? � 1. The Feshbach-
managed nonlinear coefficient reads a�t� � jas�t�j=aB �
g0 exp��t� (aB is the Bohr radius) [16,17]. The normalized
macroscopic wave function  �x; t� is connected to the
original order parameter 	�r; t� as follows:
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From the viewpoint of stability, 3D and 1D equations are
very different. For a true 1D system, one does not expect
the collapse of the system when increasing number of
atoms [5]. However, it happens that a realistic 1D limit is
not a true 1D system, with the density of particles still
increasing due to the strong restoring forces in the perpen-
dicular directions. To avoid the collapse of the bright
soliton [18], we must restrict our study of BECs to a safe
2-1  2005 The American Physical Society
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FIG. 1. The dynamics of the Feshbach resonance managed
soliton in the expulsive parabolic potential given by Eq. (8).
The parameters are given as follows: � � 2 	 10
2, g0 � 0:25,
Ac � 1, As � 2:4, and k0 � 0:03.
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range of parameters, in which the system becomes effec-
tively 1D; i.e., the energy of two body interactions is much
less than the kinetic energy in the transverse direction [15]:
�2 � a?=�2 � Njasj=a0 � 1 (� is the healing length).
The bright soliton in BECs has been created with the
parameters of N � 	103, !? � 2�	 700 Hz and !0 �
2�	 7 Hz, and afinal � 
4aB for 7Li [4], which provides
a safe range of parameters. With the same experimental
conditions in Ref. [4] and as�t � 0� � 
0:25aB, we can
calculate �2 � a?=�

2 � Njasj=a0 � 9:5 	 10
3 � 1.
Then, the scattering length is increased in the form of
a�t� � g0 exp��t�. After at least up to 50 dimensionless
units of time, the absolute value of the atomic scattering
length turns to jas�t�j � 0:8aB, corresponding to �2 �
a?=�

2 � Njasj=a0 � 3 	 10
2 � 1. Under the above
conditions, the system is effectively 1D. So a safe range
of parameters can be described as follows: (i) with the
same experimental conditions in Ref. [4]; (ii) ramp up the
scattering length in the form of a�t� � g0 exp��t� within 50
dimensionless units of time. We also have to specify the
terminology long-time dynamics. A unity of time, �t � 1
in the dimensionless variables, corresponds to 2=!? real
seconds. This means, for example, that for a BEC in a trap
with transversal size of the order of a? � 1:4 �m a unity
of the dimensionless time corresponds to 4:5 	 10
4 s.
The lifetime of a BEC in today’s experiments is of the
order of 1 s, which is about 220 in our dimensionless units.

The so-called ‘‘seed’’ solution of Eq. (1) can be chosen
as follows:
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constants. We perform the Darboux transformation [19]
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seed. Then we obtain the exact solution of Eq. (1) as
follows:
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where ks is the arbitrary real constant. On the one hand,
when Ac � k0 � 0, Eq. (4) reduces to the well-known
soliton solution:  s � Assech s exp��t=2 � i’s�, where
 s � 


�����
g0

p
exp��t�Asx�

�����
g0

p
ksAs�exp�2�t� 
 1�=� and

’s � ’c 
 g0A2
c�exp�2�t� 
 1�=2�. On the other hand,

when the amplitude of the soliton vanishes (As � 0),
Eq. (4) reduces to Eq. (3). Thus, Eq. (4) represents a bright
soliton embedded in the background. Considering the dy-
namics of the bright soliton in the background, the length
2L of the spatial background must be very large compared
to the scale of the soliton. In the real experiment [3], the
length of the background of BECs can reach at least 2L �
370 �m. At the same time, in Fig. 1, the width of the bright
soliton is about 2l � 2 	 1:4 �m � 2:8 �m [a unity of
coordinate, �x � 1 in the dimensionless variables, corre-
sponds to a? � � �h=m!?�

1=2 � 1:4 �m]. So we indeed
have l� L, a necessary condition for realizing our soliton
in experiment.

By utilizing the properties of Eq. (4), we demonstrate
that the manipulation of the scattering length can be used to
compress a bright soliton of BECs into an assumed peak
matter density. It has been reported that an abrupt change
of the scattering length can lead to the splitting of the
soliton by generating the new solitons. The fragmentation
of the soliton obviously decreases the numbers of atoms of
2-2
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FIG. 2. Time-periodic atomic exchange between the bright
soliton and the background given by Eq. (13). The range of
time is (a),(b) t � �0; 5� and (c) t � �20; 25�. The parameters are
given as follows: � � 0:02, g0 � 1, As � 4:8, (a) Ac � 0, and
(b),(c) Ac � 2:3.

PRL 94, 050402 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
11 FEBRUARY 2005
the original soliton, which is undesirable for application
[20]. However, in Eq. (4), the change of the scattering
length preserves the soliton from splitting new ones. For
simplicity, we assume k0 � ks in Eq. (7) and consider only
the case of A2

s > 4A2
c, for in the case of A2

s < 4A2
c, a small

perturbation for Eq. (4) may lead to the modulation insta-
bility [21]. With the conditions above, Eq. (4) can be
deduced into the following form:
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For a better understanding, we plot Eq. (8) in Fig. 1, which
shows the dynamics of the Feshbach resonance managed
bright soliton in the expulsive parabolic potential. As one
can see from Fig. 1, with the increasing absolute value of
the scattering length, the bright soliton has an increase in
the peaking value and a compression in the width. As a
result, we can get a bright soliton with the assumed peak
matter density. It is interesting to observe that in the
expulsive parabolic potential, the bright soliton is set into
motion and propagates in the longitudinal direction, in-
stead of oscillating in an attractive parabolic potential. The
possibility of compressing the soliton of BECs into an
assumed peak matter density could provide an experimen-
tal tool for investigating the range of validity of the 1D GP
equation. Since the quasi-1D GP equation applies only for
low densities, it would indeed be interesting to see how far
one can compress a soliton in a real experiment by increas-
ing the absolute value of the scattering length.

Inspired by two experiments [3,4], we can design the
compression of a bright soliton in BECs with the following
steps: (i) Create a bright soliton in BECs with the parame-
ters of N � 	103, !? � 2�	 700 Hz and !0 � 2�	
7 Hz, and as � 
0:25aB for 7Li. The main effect of this
expulsive term is that the center of the BECs accelerates
along the longitudinal direction. (ii) Under the safe range
of parameters discussed above, ramp up the absolute value
of the scattering length according to a�t� � g0 exp��t� due
to Feshbach resonance, where � � 2j!0j=!? � 2 	 10
2

is a very small value. A unity of time, �t � 1 in the
dimensionless variables, corresponds to 2=!? �
4:5 	 10
4 real seconds. (iii) After at least up to 50 di-
mensionless units of time, the absolute value of the atomic
scattering length turns to jas�t�j � 0:8aB, which is less
than jafinalj � 4aB. This means that during the process of
compressing the bright soliton the stability of soliton and
the validity of 1D approximation can be kept as displayed
in Fig. 1. Therefore, the phenomena discussed in this Letter
05040
should be observable within the current experimental
capability.

Furthermore, based on Eq. (8), we find that when
sinh � 0 the peak matter density of bright soliton arrives
at the maximum

j j2 � exp��t�
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As 
 2Ac cos’

�
; (10)

and that when cosh � As
Ac cos’


Ac cos’
As

the peak matter
density of bright soliton arrives at the minimum
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This means that the bright soliton can only be squeezed
into the assumed peak matter density between the mini-
mum and maximum values. In order to investigate the
stability of the bright soliton against the variation of the
scattering length in the expulsive parabolic potential, we
obtain

lim
L!1

Z �L


L
�j �x; t�j2 
 j ��L; t�j2�dx �

2)2�����
g0

p ; (12)

which is the exact number of the atoms in the bright soliton
against the background described by Eq. (8). This indicates
that during the process of the compression of the bright
soliton the number of atoms in the bright soliton keeps
invariant. In contrast, the quantity

+ � lim
L!1

Z �L


L
j �x; t� 
  ��L; t�j2dx

�
2)2�����
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p �1 � AcM cos’�; (13)
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where
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counts the number of atoms in both the bright soliton and
background under the condition of  ��L; t� � 0.
Equation (13) displays that a time-periodic atomic ex-
change is formed between the bright soliton and the back-
ground. As shown in Fig. 2(a), in the case of zero
background, i.e., Ac � 0, there will not be the exchange
of atoms. However, in the case of nonzero background as
shown in Figs. 2(b) and 2(c), the exchange of atoms
between the bright soliton and the background becomes
quicker when increasing the absolute value of the scatter-
ing length. The conclusion can be made that the number of
atoms in the bright soliton in BECs keeps dynamic stability
against the variation of the scattering length in the expul-
sive parabolic potential. The consideration provided above
implies that we should construct the bright soliton in BECs
on the background. A question arises about the possibility
of the creation of such a state experimentally. We notice
that Eq. (8) will take the particular form at the time t0 �

1
2� ln�
 ��4n�1��

As)2g0
� 1�, n � 
1;
2;
3 . . . , as follows:

 �x; t� � 
Ac exp
�
�t0
2
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exp�i’c�


 i)2 exp
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2

�
sech exp�i’c�;

� 
 0�x; t0� 
  soliton�x; t0�; (15)

which is the linear combination of Eq. (3) and a bright
soliton. So Eq. (15) means that Eq. (8) can be generated by
coherently adding a bright soliton into the background of
density described by Eq. (3).

In conclusion, we present a family of exact solutions of
the nonlinear Schrödinger equation with the time-varying
nonlinear coefficient in the expulsive parabolic potential.
Our results describe the dynamics of the Feshbach reso-
nance managed bright soliton of BECs in an expulsive
parabolic potential. Furthermore, under a safe range of
parameters, it is possible to squeeze a bright soliton of
BECs into the assumed peak matter density, which can
provide an experimental tool for investigating the range of
validity of the 1D GP equation. We also find that the
number of atoms in the bright soliton keeps dynamic
stability: the exchange of atoms between the bright soliton
and the background becomes quicker when increasing the
absolute value of the scattering length. Recent develop-
ments of controlling the scattering length in the experi-
ments allow for the experimental investigation of our
prediction in the future.
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