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The confinement induced resonance provides an indispensable tool for the realization of the
low-dimensional strongly interacting quantum system. Here, we investigate the confinement induced
resonance in spin-orbit coupled cold atoms with Raman coupling. We find that the quasi-bound levels
induced by the spin-orbit coupling and Raman coupling result in the Feshbach-type resonances. For
sufficiently large Raman coupling, the bound states in one dimension exist only for sufficiently strong
attractive interaction. Furthermore, the bound states in quasi-one dimension exist only for sufficient large
ratio of the length scale of confinement to three dimensional s-wave scattering length. The Raman coupling
substantially changes the confinement-induced resonance position. We give a proposal to realize
confinement induced resonance through increasing Raman coupling strength in experiments.

T
he experimental realizations of synthetic gauge field and the spin-orbit coupling (SOC) in neutral cold atoms
provide a new arena to explore the exotic effects in cold atomic physics. For example, the SOC could bring
about nontrivial ground states in Bose-Einstein Condensate (BEC), such as vortex or vortex lattice states,

plane wave phase, standing wave phase1–10. The prominent effect induced by the SOC in fermions is that the SOC
could enhance the low energy density of states, which results in the formation of two-body bound states and
enhancement of the pairing gap11,12. In polarized fermion gas, the spin-orbit coupling modifies the finite tem-
perature phase diagram13. The exotic dynamic effect, e.g. Zitterbewegung oscillation, appears in the spin-orbit
coupled cold atomic gas14,15. In the presence of SOC, the two-body scattering properties in three dimension have
been investigated. It is shown that the SOC usually results in the mixed-partial-wave scattering16. For the low-
energy scattering, the short range behaviors of wave function in three dimension can be modified by the SOC17–19.
The two-body scattering properties in qusi-two-dimensional confinement with pure Rashba spin-orbit coupling
are investigated20.

For the low-dimensional quantum gas, the two-body scattering properties can be affected greatly by the
external confinement potential. For example, when the s-wave scattering length is comparable to the transverse
confinement length (as/aH 5 1/C with C 5 2f(1/2) < 1.46), there exists a resonance, wherein the one-dimen-
sional effective interaction constant diverges21,22. The similar scenario of the confinement induced resonance
(CIR) also occurs in the quasi-two-dimensional case23,24. The confinement induced resonance has been observed
through producing confinement induced molecules in quasi-one -dimensional Fermi gas25. It is also found
experimentally that a single resonance splits into two resonances by introducing the anisotropic confinements26.
The transversally anisotropic confinement alters the position of resonance by tuning the anisotropic ratio27,28. The
confinement induced resonance which can be used to tune the interaction between atoms, provides a crucial
ingredient to realize the strong interacting low-dimensional systems, such as Tonks-Girardeau gas29,30 and
possible Tomonaga-Luttinger liquid31,32.

Some novel quantum states, for example, topological superfluidity, Majorana edge states or non-Abelian
anyons could emerge in the low-dimension spin-orbit coupled quantum gas with Zeeman field33–35. In experi-
ments, an effective Zeeman field in spin-orbit coupled atomic gas can be produced by two-photon Raman
coupling36–41. The Raman coupling strength corresponds to the effective Zeeman field strength. The combination
of the Raman coupling and SOC plays an essential role in the formation of the above novel quantum states. The
effects induced by the Raman coupling and SOC are usually considered within BCS (Bardeen-Cooper-Schrieffer)
mean-field framework42,43. It is known that the two-body interaction properties provide basis for understanding
the many-body system. The studies on the effects of the Raman coupling on two-body problem may give some
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insight into exotic quantum states. In addition, the confinement
induced resonance provides the indispensable tool for the realization
of the low-dimensional strongly interacting quantum gas. Further-
more, how the Raman coupling and SOC affect confinement induced
resonance is an inevitable question to clarify. In the present paper, we
try to address the above questions by studying the two-body scatter-
ing problem in one dimension and the confinement induced res-
onance in the presence of the Raman coupling and SOC.

Results
The two-body scattering in the presence of spin-orbit coupling
and Raman coupling. We consider the Hamiltonian of spin-orbit
coupled cold atoms with Raman coupling
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where the HK is the Hamiltonian in center of mass coordinate of two
atoms, H0 is the free Hamiltonian in relative coordinate. K and k are
the total momentum and relative momentum of two atoms along x
direction, respectively. sx and sz are the spin Pauli matrix and V(x) is
the interaction between two particles. c denotes the SOC strength
and V is the two-photon Raman coupling strength between two
Zeeman sublevels in experiment. The SOC strength is determined
by c~2p�hsin(h=2)=l, where l is the Raman laser wave length, m is
the mass of atom, h is the angle between two Raman beams. The
above Hamiltonian is realized experimentally in fermion atomic gas
of 40K38. The above spin-orbit coupling is the mixture of equal
Rashba and Dresselhaus type. Here, we choose the x axial direction
as the direction of momentums. For simplicity, in the whole
manuscript we denote K and k as the total and relative
momentums, respectively, rather than Kx and kx. The above
Hamiltonian can be obtained from the Hamiltonian in Ref. 38 by
applying a rotation in spin space (sx R sz, sy R sy and sz R 2sx).
We take the natural units m 5 1, �h~1 and c 5 1 in this section.

From Eq. (1), we know that the motion of center of mass is coupled
to the relative motion through spins. In the following, we focus on
the subspace of Hamiltonian with K 5 0 (the effects of the non-zero
total momentum are also discussed). In the spin basis
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. ffiffiffi
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Raman coupling and SOC are transformed into

M~2c k
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interaction between cold atoms can be modeled by zero-range
pseudo potential. Furthermore, we consider two identical spin-1/2
fermions. Hence, only the s-wave interaction in the singlet channel
has contribution to two-body scattering. Therefore, the interaction
matrix between two atoms takes the form as V(x) 5 jsæÆsjflg1Dd(x),
where g1D is one-dimensional interaction constant. From the matrix
V and M, we know that the spin channel jt3æ is decoupled from other
channels and not affected by the interaction. Thus, the spin channel
jt3æ is dropped in the following, and the Hamiltonian H0 is reduced to
a 3 3 3 matrix. After diagnalizing H0, the eigenenerges are obtained

as E1 kð Þ~k2z2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z V=2cð Þ2

q
, E2(k) 5 k2, E3 kð Þ~k2{
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q
(see the panel (a) of Fig. 1), respectively. When

the total momentum K ? 0, the spin channel jt3æ will couple with
other states. Then, the H0 is a 4 3 4 matrix and there are four
continuous energy branches [see the panel (b) of Fig. 1].

The scattering problem can be solved through the Lipmann-
Shwindger equation (for details see Metholds). The scattering with
Raman coupling and SOC is intrinsically multi-channel scattering

problem44,45. There exist different scattering thresholds for different
energy branches. When the incident energy crosses the thresholds,
some scattering channels are opened or closed. In certain scattering
energy interval, there may exist several scattering channels scattering
each other (see Fig. 1). The scattering amplitudes fm,n (reflection
amplitudes) make up a matrix of rank 1, where the subscript n (m)
denotes the specific incident (reflecting) channel with a specific
energy . A single total amplitude f is obtained by diagnalizing the
scattering matrix in every energy interval.

It is known that in the usual case without Raman coupling and
SOC, the reflection coefficient approaches one (total reflection) as
the incident energy approaches the scattering threshold of th~0. For
a fixed incident energy w0, the reflection also approaches total
reflection as the interaction g1D approaches infinity. For attractive
interaction g1D , 0, there always exists a bound state below the
scattering threshold.

In Figs. 2 and 3, we calculate the reflection coefficient (jfj2) from
the obtained scattering amplitude f. We can see that, compared with
the usual case, the Raman coupling and SOC cause fundamental
changes in the behaviors of the scattering amplitude at low energy.
First of all, there exist scattering resonances in the parameter space
because there exist quasi-bound states between the energy branches.
The interaction matrix V can be rewritten in terms of the eigen-basis
of H0. In addition to the interaction in the respective eigen-basis
channel (diagonal part), there are also non-diagonal part coupling
to different eigen-basis. The upper energy branches could support
bound states near the incident energy. In addition, the bound states
are coupled to the scattering states due to the non-diagonal inter-
action term. Hence, it results in a Feshbach-type resonance scatter-
ing46–48. Secondly, when the collision energy approaches the lowest
threshold, the reflection coefficient does not approach 1. So the
incident wave could not be totally reflected in the presence of SOC
and Raman coupling. Thirdly, the reflection may vanish under
certain conditions. As shown in Fig. 2 and panel (a) of Fig. 3,
as the incident energy approaches the threshold of ~0 from
below, the scattering amplitude becomes zero no matter how large
the interaction is. This is because when the incident energy
approaches the threshold of zero energy from below ( ?0{), the
middle energy branch E2 contributes a infinitely large real number
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denominator of the scattering amplitude (see Eq. (4) in Metholds).
Next, as the interaction g1D approaches infinity, contrary to the usual
case, the reflection needs not mean a total reflection. Due to the
coupling between singlet and triplet channels caused by the SOC,
the incident wave can tunnel through other channels, even the inter-
action strength is very strong in singlet channel. A similar scenario
also appears in impurity scattering problems of multi-component
coupled system49.

Finally, the large Raman coupling changes the conditions of the
existence of bound states. When the Raman coupling satisfies 0 , V
# 2c, there always exists a bound state below the lowest threshold for
attractive interaction g1D , 0 as the usual case. However, if V . 2c .

0, there exists a bound state only when the attractive interaction is
strong enough. This is because when the energy approaches the lowest
threshold ( ?{V), all the energy branches contribute a finite part
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amplitude (see Eq. (4) in Metholds), rather than an infinitely large
number as that in usual case without Raman coupling and SOC. The
existence of the bound states is directly related to the density of states
near the lowest scattering threshold. It is known that, in the usual case,
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the density of states in one dimension near the scattering threshold

( th~0) behaves like *
1ffiffip . There always exists a bound state bellow

the scattering threshold th as long as the interacting (g1D , 0) is
attractive (no matter how weak it is). When the Raman coupling is
weak (V # 2c), the lowest energy branch has two minimums occur-

ring at non-zero momentums. The density of states near the mini-

mums also looks like !
1ffiffip (the is measured with respect to the

minimum of the continuous spectrum).
Then the conditions of existence of bound states are the same as

the usual case. However, if the Raman coupling is strong enough (V
. 2c), the lowest energy branch has only one minimum locating at
the zero momentum (see the Fig. 1). Intuitively thinking, the density

of states should be proportional to
1ffiffip . However, at the zero

momentum, we can see that the spin-orbit coupling does not play
role at all in the energy spectrum (see Eq. (1)). The lowest point
should correspond to the spin-triplet state, rather than the singlet
state. Furthermore, we consider the interaction occurring only in the
singlet channel. So the effective density of states near the lowest
threshold which could contribute to the formation of bound state
is very low. For example, there exists a suppression factor

*
k2

k2z V=2ð Þ2

 !
in the denominator of the scattering amplitude

(see Eq. (4) in Metholds). The effective density of states near the
lowest scattering threshold behaves like

ffiffip
approaching to zero as

?0 (the is measured with respect to the lowest scattering thresh-
old), rather than like 1

� ffiffip
blowing up. So, in this case, there exist

bound states only when the interaction is strong enough. In the
following, we will see that the modifications of effective density of
states near the lowest threshold also have significant impacts on the
existence of the bound states of quasi-one-dimensional system.

Figure 1 | The energy spectrum of the relative motion (the Raman parameter V 5 4c2/m). (a): There are three energy branches (K 5 0), the highest E1,

the middle one E2 and the lowest branches E3. When the Raman coupling is weak (V# 2c), there exist two minimums on the lowest energy branch E3 (not

shown in the Figure). When the Raman coupling is strong enough (V . 2c), the lowest threshold is 2V locating at the zero momentum of the

lowest energy branch E3. The A, B and C label three different scattering energy intervals [24, 0], [0, 4] and [4, ‘), respectively. The numbers of the

scattering channels in different energy intervals are different. (b): Due to non-vanishing total momentum (K 5 5c), the spin-state |"#1 #"æ would couple

with other spin states. So there would be four continuous energy branches.

Figure 2 | The reflection coefficient | f | 2 as a function of the interaction
g1D and the scattering energy when V 5 4c2/m (K 5 0). f is the scattering

(reflection) amplitude in one dimension. The corresponding three

scattering energy intervals in panel (a) of Fig. 1 are also labeled here.
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The modifications of scattering properties are robust even for non-
zero total momentum K ? 0 (see the panel (b) of Fig. 3). However,
the position and width of Feshbach Resonance are usually modified
by the non-zero total momentum. Fig. 4 shows the energy of bound
states (with respect to the lowest scattering threshold) for attractive
interaction (g1D , 0) in the pure one-dimensional system. We can
see that, with increase of total momentum K, the critical interaction
magnitude jg1Dj where the bound states begin to appear near the
lowest threshold becomes larger and larger. From the above discus-
sion, we know that for stronger Raman coupling V, the required
interaction strength jg1Dj should be stronger in order to form a
bound state. So the effects of the K ? 0 is similar to that of increasing
Raman coupling. In the next section, we will see the conclusion that
the increase of total momentum K amounts to increasing the Raman
coupling V is also valid for the quasi-one-dimensional system.

The confinement induced resonance. The one-dimensional effec-
tive interaction constant is derived through investigating two-body
problem of three dimension with confinement. The Raman coupling
and SOC may change the condition of confinement induced
resonance. After separating the motion of center of mass, the Hamil-
tonian with confinement can be written as

Hr~H0zH\zV rð Þ,
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where H0 is the free Hamiltonian of relative coordinate along x
direction as above section, HH is transverse confinement,
V rð Þ~ sj i sh j6g3Dd r!

� �
Lr r:ð Þ is the three dimensional s-wave

psuedo-potential interaction between atoms50,51. g3D~4p�h2as=m
and vH are the three dimensional interaction constant and
frequency of confinement trap, respectively. as and m 5 m/2 are
the s-wave scattering length and the reduced mass of two atoms,
respectively. In this section, we take natural units as m 5 1, �h~1
and vH 5 1.

The one-dimensional effective interaction constant g1D can be
obtained in terms of the three dimensional s-wave scattering length
as (see Methods),
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The above equation gives the connection between the one-dimen-
sional effective interaction constant g1D and the three dimensional s-
wave scattering length. When the SOC vanishes (c 5 0), C2 becomes
zero. Furthermore, if the scattering energy ?0, the constant C1 5 C

Figure 3 | The reflection coefficients in the energy interval A of Fig. 1. (a): the refection coefficient corresponding to K 5 0. (b): the refection

coefficient corresponding to K 5 5c. The Feshbach resonance peaks correspond to the quasi-bound states embedded between the continuous energy

branches. The resonance position and width vary with the increase of the interaction strength. We can see that when the incident energy approaches the

threshold of the middle branch E2, the reflection vanishes. When the incident energy approaches the lowest threshold the reflections are not total

reflections.
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5 2f(1/2) < 1.46, the resonance condition is reduced to Olshanii’s
result21.

From panel (a) of Fig. 5, we can find that, with the increase of the
Raman coupling, the resonance position as/aH is getting smaller. In
addition, the resonance position inclines to be independent of SOC
strength for sufficiently large Raman coupling (V?1). In fact, the

resonance position as

.
a\*1

. ffiffiffiffiffiffi
2V
p

can be arbitrarily small by

increasing the Raman parameter V for fixed SOC parameter (c ,
1). It can be shown that, for a fixed spin-orbit coupling (c 5 1),
C1*

ffiffiffiffiffiffi
2V
p

diverges and C2 is bounded asVR ‘. When the condition
of confinement induced resonance is satisfied, from Eq.(3), the res-

onance position as

.
a\~1

.
C1zC2ð Þ*1

. ffiffiffiffiffiffi
2V
p

. It means that,

compared with the usual case, it is much easier to fulfill the condi-
tions of confinement induced resonance in the presence of Raman
coupling and SOC. For sufficiently large Raman coupling, the experi-
mental observation of confinement induced resonance needs not
resort to the usual magnetic Feshbach resonance techniques.

For fixed SOC strength (c 5 1), we show in Fig. 6 the bound state
energies supported by the ‘‘closed’’ channels (the transversely excited
modes) and the full Hamiltonian, respectively22,27. The confinement
induced resonance can also be viewed as a Feshbach resonance as
that in the usual case without Raman coupling and SOC. The res-
onance condition is satisfied when the energy of the bound states in
closed channel coincides with the scattering threshold of the ground
transverse modes. In the meantime, the difference between the
bound state energies in the closed channels and the full Hamil-
tonian is 2�hv\.

However, based on the same reasons as that in the pure one-
dimensional case, the large Raman coupling also changes the existing
condition of the bound states in the quasi-one dimension. When the
Raman coupling satisfies V # 2c, there always exist the bound states
irrespective of the sign of the s-wave scattering length as, which is
consistent with the usual case25 (see the green and blue lines in the
panel (a) of Fig. 6). However, ifV. 2c, the bound states exist only for
sufficiently large aH/as (see red lines). As stated before, the reason is

that the spin-orbit coupling and the Raman coupling change greatly
the effective density of states near the lowest scattering threshold of
energy spectrum. The spin-orbit coupling term ck sx

2{sx
1

� �
does not

play significant roles near zero momentum. So the states correspond-
ing to the lowest and highest spectrum belong to spin-triplets, while
the state in the middle energy branch is the spin-singlet. In addition,
we consider the interactions occurring at the spin-singlet channel. So
the bound states can be roughly viewed as the spin-singlet bound
states which are mainly supported by the middle energy spectrum.
Furthermore, the bound states exist below the lowest threshold (the
threshold of triplet energy spectrum). So, the binding energy (relative
to the middle energy branch) of bound states has to be larger than the
differences between the thresholds of the middle and the lowest
energy branches. In other words, the large Raman coupling V pushes
the energy of bound state low by amount of V at least. So, for strong
Raman coupling, there exist bound states only when the interaction
is strong enough. Then the bound states belong to the deeply binding
states of the spin-singlet channel. In consequence, the position of
confinement induced resonance is also modified accordingly.

The panel (b) of Fig. 5 shows the dependence of the resonance
position on the variation of the total momentum K. When the Raman
coupling V 5 0, the spin-orbit coupling terms can be removed by a
gauge transformation. So the resonance position is not affected by the
total momentum K (see the green line in the panel (b)). When the
Raman coupling V ? 0, the resonance position as/aH becomes smal-
ler and smaller with the increase of K. The panel (b) of Fig. 6 shows
the energy of bound states for K ? 0 in the quasi-one-dimensional
system. Similar to the effects of increasing the Raman coupling V, the
strong total momentum K also modifies the existing condition of
bound states in quasi-one dimension. So the increase of total
momentum K amounts to the increase of Raman coupling V if the
Raman coupling V ? 0.

Here we see what roles the confinement and the SOC (Raman
coupling) play, respectively. The confinement freezes the transverse
degree of atomic motion, and produces a quasi-one-dimensional
system. Due to the enhancement of density of states, there is always

Figure 4 | The energy of bound states for attractive interaction (g1D , 0) in one dimension From the Fig. 4, we can see the energy of bound
states is getting lower and lower with increase the interaction magnitude | g1D | . The critical interaction magnitude is large for large total momentum K.

So the effects of K are very similar to that of increasing Raman coupling.
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two-body bound state in the quasi-one-dimensional system no mat-
ter how weak the interaction is, as long as the interaction is attractive.
After introducing the SOC and Raman coupling, the couplings could
reduce, or even change fundamentally the effective density of states
near the lowest threshold. The existence condition of bound states is
also modified accordingly. The above two competing factors deter-
mine the formations of bound states in the confined spin-orbit
coupled system.

Discussion
The Raman coupling and SOC have been realized experimentally
in40K atomic gas38. Two magnetic sublevels j"æ 5 j9/2, 9/2æ and j#æ
5 j9/2, 7/2æ are chosen as two spin 1/2 states. One can choose the
experimental parameters c=m*2p�h= mlð Þ<1:28cm=s, vH , 2p 3

17 kHz with aH , 172 nm. The s-wave background scattering
length as , 170a0 , 9 nm. Under the above conditions, the SOC

strength c*
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�hmv\

p
, the ratio as/aH 5 0.052. To satisfy the con-

dition of confinement induced resonance, one can increase Raman
coupling strength (V , h 3 3 MHz) by tuning the intensity of
Raman beams. The binding energies of bound states near confine-
ment induced resonance (EB*2�hw\ ) can be measured by using
radio-frequency (rf) spectroscopy52. It is expected that there are
two peaks in the radio-frequency photodissociation spectra. One
peak locates at the atomic transition frequency (n0) of an occupied
state to another initially unoccupied state (e.g. j9/2, 7/2æ R j9/2, 5/
2æ). The other peak at a non-zero detuning (d 5 nrf 2 n0 , 34 kHz)

from the atomic transition corresponds to the dissociation of quasi-
one-dimensional bound states25.

In summary, we investigate the effects of SOC and the Raman
coupling on the confinement induced resonance. The Raman coup-
ling and spin-orbit coupling fundamentally change the interacting
properties of atoms. We propose to realize the confinement induced
resonance by increasing Raman coupling strength. Different from
the usual way, such as utilizing Feshbach resonances to produce a
large scattering length, our work gives a new way to realize the
strongly interacting quasi-one-dimensional atomic gas with Raman
coupling and spin-orbit coupling. Due to the exotic effects induced
by Raman coupling and spin-orbit coupling, a lot of interesting
many-body physical phenomena, e.g., the crossover of BCS-BEC
superfluidity53,54, inhomogeneous Fulde-Ferrell-Larkin-Ovhinnikov
(FFLO) state55, fermion pair breaking in the presence of external
magnetic field56, need to be revised in the strong interacting quasi-
one dimension atomic gas.

Methods
In this work, we investigate the two-body scattering problem in one-dimensional and
the three dimensional cold atomic systems with confinement, respectively. Through
comparing the scattering state in the one dimension with that in three dimension, one
can get the effective one-dimensional constant (g1D) in terms of the three dimensional
s-wave scattering length (as).

1 Two-body scattering in one dimension. In this section, we give the detailed
calculation of the scattering amplitude. We consider the one-dimensional Hamiltonian
of two atoms in the presence of the Raman coupling and the spin-orbit coupling

Figure 5 | The resonance position as/aH as a function of the Raman parameter V and total momentum K (c~
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�hmv\

p
). (a): as shown in panel (a) of

Fig. 5, when the Raman coupling is absent (V5 0) and the incident energy approaches the lowest threshold (the minimum of E3), the resonance condition

is also exactly the same as the case without SOC (as/aH 5 1/(C1 1 C2) 5 1/C < 0.68). It is related to the fact that the constant gauge potential can be

gauged away by applying a gauge transformation when the Raman coupling is absent. However, in the presence of non-zero Raman coupling, the

resonance condition at the lowest threshold could never recover the usual case. (b): the resonance position as a function of total momentum K. For non-

vanishing Raman coupling (V ? 0), the resonance position as/aH is getting smaller smaller with the increase of the total momentum K.
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We introduce D~
V

2c
in the above equation.

The interaction between atoms can be modeled by zero-range pseudo potential.
Therefore the interaction matrix between two atoms takes the form as

V xð Þ~

g1Dd xð Þ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA,

where g1D is the one-dimensional interaction constant. From the interaction matrix V

and matrix M, one can get that the spin channel :;z;:ð Þ
. ffiffiffi

2
p

is decoupled from

other channels in the case of K 5 0. So we will drop it in the following. The
Hamiltonian is reduced a 3 3 3 matrix. After diagnalizing the H0, the eigenstates (in
coordinate space) and eigenenerges are obtained
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Figure 6 | The bound state energies in the closed channels and the full Hamiltonian, respectively (with SOC strength c~
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�hmv\

p
). (a): The

bound state energies are measured with respect to the lowest thresholds. The thin lines denote the bound state energies supported by the closed channels,

and the thick lines are the bound state energies in the full Hamiltonian. With the increase of Raman coupling V, the resonance position as/aH (the

reciprocal of aH/as) is getting smaller and smaller, which is consistent with that in panel (a) of Fig. 5. (b): the energy of bound states for various total

momentums K. We can see that with the increase of the total momentum K, the modifications of existing conditions of bound states are very similar to

that of increasing the Raman coupling. Note here the green line in panel (b) corresponds to the blue line in panel (a).
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corresponding to eigensnergies E1 kð Þ~k2z2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2zD2

p
, E2(k) 5 k2,

E3 kð Þ~k2{2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2zD2

p
, respectively (in the natural units of m 5 1, �h~1 and c 5 1).

The energy spectrum is shown in panel (a) of Fig. 1.
The scattering problem can be solved through the Lipmann-Shwindger equation

Y xð Þ~Y0 xð Þz
ð

dx’G ,x,x’ð ÞV x’ð ÞY x’ð Þ,

where G ,x,x’ð Þ~
X

m
x

1
{Emzig

����
����x’


 �
is the free Green’s function. In general,

the Green’s function is a 3 3 3 matrix. In the case of zero range interaction the
Lipmann-Shwindger equation takes the following form

Y xð Þ~Y0 xð Þz g1DY
1
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0
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where Y1
0 xð Þ is the first component of incident state Y0(x) and
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with g R 01. The above integrals can be obtained by using the residue theorem

G11 xð Þ~i
{D2eiax xj j

2a2 a2
2zD2� �

"
z

{a2
1

� �
a1eia1 xj j

2 a2
1{a2

3ð Þ a2
1zD2� �z

{a2
3

� �
a3eia3 xj j

2 a2
3{a2

1ð Þ a2
3zD2� �

#
,

G21 xð Þ~i

ffiffiffi
2
p

Deia2 xj j

4 a2
2zD2� �

"
z

ffiffiffi
2
p

D {a2
1

� �
z2c a2

1zD2� �� �
eia1 xj j

4 a2
1{a2

3ð Þ a2
1zD2� �

z

ffiffiffi
2
p

D {a2
3

� �
z2c a2

3zD2� �� �
eia3 xj j

4 a2
3{a2

1ð Þ a2
3zD2� �

#
,

G31 xð Þ~i

ffiffiffi
2
p

Deia2 xj j

4 a2
2zD2� �

"
z

ffiffiffi
2
p

D {a2
1

� �
{2c a2

1zD2� �� �
eia1 xj j

4 a2
1{a2

3ð Þ a2
1zD2� �

z

ffiffiffi
2
p

D {a2
3

� �
{2c a2

3zD2� �� �
eia3 xj j

4 a2
3{a2

1ð Þ a2
3zD2� �

#
,

with a1~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2c2{2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zc2zD2

qr
, a2~

ffiffip
and a3~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2c2z2c
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zc2zD2

qr
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For x . 0, the above equations is expressed in another form

G11 xð Þ
G21 xð Þ
G31 xð Þ

0
B@

1
CA~f1Y1,a1 xð Þzf2Y2,a2 xð Þzf3Y3,a3 xð Þ,

where f1~
i
ffiffiffi
2
p

c

a2
3{a2

1
, f2~

iD

2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2zD2
q , f3~

{i
ffiffiffi
2
p

c

a2
3{a2

1
. For a given incident energy,

there is possibility that there exist several states scattering each other (see Fig. 1). From
the Eq. (4), we can explicitly obtain the scattering amplitude for a given incident state.
The scattering amplitude makes up to a scattering matrix of rank 1, it can be reduced
to one single total amplitude f by diagnalizing the scattering matrix. According to the
number of the scattering states, there are several distinct cases.

The incident energy is above the highest scattering threshold Vv [within energy
interval C (see Fig. 1)]. When incident energy satisfies Vv , there will be three eigen-
states scattering each other forwardly (all a1, a2 and a3 are real number), which locate
at the right semi-axis of relative momentum (k . 0) (see Fig. 1). The resulting total
scattering amplitude is

f ~
g1D Y1

1,a1
0ð Þf1zY1

2,a2
0ð Þf2zY1

3,a3
0ð Þf3

h i
1{g1DG11 0ð Þ :

The incident energy is above the zero-energy, but below the highest threshold V
(0v vV within energy interval B). When incident energy lies in 0v vV, the
scattering state on the highest branch is closed (a1 becomes imaginary number). The
remainder two eigen-states scattered each other forwardly. The scattering amplitude
is

f ~
g1D Y1

2,a2
0ð Þf2zY1

3,a3
0ð Þf3

h i
1{g1DG11 0ð Þ :

The scattering energy satisfies {Vv v0 (within energy interval A). When the scat-
tering energy e lies in the regime {Vv v0, there is only one scattering state on the
lowest energy branch (both a1 and a2 become imaginary number). The scattering
amplitude is

f ~
g1D Y1

3,a3
0ð Þf3

h i
1{g1DG11 0ð Þ :

2 The confinement induced resonance. The scattering problem in three dimension
with confinement can be solved as follow. We assume the confinement is strong
enough that only the transverse harmonic ground state is occupied. The incident
energy with respect to the lowest threshold and the ground state energy of transverse
harmonic oscillator should be lower than the transverse exited state energy. The
lowest excited state which can be coupled to ground states by the s-wave interaction is
w1(y)w1(z) with energy 2�hv\

22,57. Then, the incident energy of scattering states should
v2�hv\~2 (in natural units of m 5 1, �h~1 and vH 5 1). Using the Lipmann-

Shwindger equation, three dimension scattering wave function can be obtained

Y rð Þ3D~w0 yð Þw0 zð ÞY0 xð Þz
ð

dr’G3D ,r,r’ð ÞV r’ð ÞY3D r’ð Þ,

where wn tð Þ~
ffiffiffi
p
p

2nn!a\
� �{1=2

e{t2=2a2
\ Hn t=a\ð Þ, a\~

ffiffiffiffiffiffiffiffiffiffi
�h

mv\

s
~

ffiffiffi
2
p

is wave
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function and the length scale of transverse Harmonic oscillator. Y0(x) is one
dimensional incident wave function along x direction as above section. The

interaction V is the pseudo-potential V rð Þ~ sj i sh j6 4p�h2as

m
d ~rð ÞLr r:ð Þ. Substituting

the interaction V, the wave function in three dimension becomes

Y3D x,y,zð Þ~w0 yð Þw0 zð ÞY0 xð Þzg3DF

G3D rð Þð Þ11

G3D rð Þð Þ21

G3D rð Þð Þ31

0
B@

1
CA,

where F~limr?0Lr r Y1
3D rð

� �� �
, Y1

3D rð Þ is first component of three dimensional wave
function. Focusing on y 5 z 5 0 and the resulting qusi-one dimensional wave
function is

Y xð Þ~Y3D x,0,0ð Þ
w0 0ð Þw0 0ð Þ

~Y0 xð Þz g3DY
1
0 0ð Þ

1{g3D G3d 0ð Þ11

� �
r

G3D x,0,0ð Þð Þ11

G3D x,0,0ð Þð Þ21

G3D x,0,0ð Þð Þ31

0
BB@

1
CCA,

ð5Þ

where (G3D(0)11)r 5 limrR0hr[r(G3D(r)11)] is the regular part of the Green’s function
matrix element G11 at origin. It is known that when r R 0, the three dimensional
Green’s function in confined system also diverges as that in homogeneous space
(G3D(r)11)rR0 / 2 1/4pr58. In order to obtain the regular part, we need to subtract the
singular part (21/4pr) from G3D(r)11 near the origin. For the qusi-one dimensional
scattering problem, we only need to know the long-ranged asymptotic behavior of
three dimensional Green’s function and the regular part of G3D(x, y 5 0, z 5 0)11 near
x 5 0. The Green’s function can be decomposed as two terms:

G3D ,x,y~0,z~0ð Þ~ x,0,0
1

{H0zH\zig

����
����0,0,0
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~
X

n1,n2 ,k,m

w�n1
0ð Þw�n2

0ð Þwn1
0ð Þwn2

0ð Þ x j Ym,kh i Ym,k j 0h i
{ n1zn2z1{Em kð Þ½ �zig

~G3D1zG3D2,

where

G3D1~
X
k,m

w�0 0ð Þw�0 0ð Þw0 0ð Þw0 0ð Þ x j Ym,k)h i Ym,k j 0h i
{ 1{Em kð Þ½ �zig

,

and

G3D2~{
X

n1 ,n2 ,k,m½ �’

ð?
0

dte{ n1zn2z1{Em kð Þ{½ �t

w�n1
0ð Þ

h
,w�n2

0ð Þwn1
0ð Þwn2

0ð Þ x j Ym,kh i Ym,k j 0h i
i
,

here jYm,kæ are the eigenstates of H0 which is same as that in the above section. The
summation

X
n1, n2k,m½ �’ excludes the term [n1 5 0, n2 5 0, k, m], the identity

1
n

~

ð?
0

dte{nt nw0ð Þ has been used in the above Equation. The first part G3D1 is

related to the scattering channel and long ranged, while the second part G3D2 is short
ranged corresponding to influences of virtual transition of other closed channels.
Redefining the reference point of energy ? {1, it is easy to see that the first term
G3D1 is just the one dimensional Green’s function G(x) up to a factor jw0(0)j4 5 1/2p.
In the following, we will see the short-ranged part of matrix element (G3D2(x))11 is
related to confinement induced resonance (CIR).

Using
X?

n~0

t
2

� �n

n!
Hn xð ÞHn yð Þ~ 1{t2

� �{1=2
exp

2xyt{ x2zy2ð Þt2

1{t2


 �
, complet-

ing the summation over the index [n1, n2], the second part of the matrix element
(G3D2(x))11 takes the form
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where
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It can be shown that the x2(x) is not singular as x R 0, while the x1(x) does diverge
x1(x) / 21/4px. Substracting the diverging part,

x1r 0ð Þ~{

ffiffiffiffiffi
2p
p
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dt
e t=2
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ffiffi
t
p {

1
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 �
:

So the regular part of Green’s function (G3D(0)11)r 5 G11(0)jw(0)j4 1 x1r(0) 1 x2(0).
For x?1, the Green’s function G3D x?1,0,0ð Þ<G3D1 x,0,0ð Þ~ w0 0ð Þj j4G xð Þ, G(x) is
the Green’s function in pure one domension. Comparing Eq. (4) with (5), we can get
the one-dimensional effective interaction constant in term of the three dimensional s-
wave interaction constant

g1D~
g3D=2p

1{g3D x1r 0ð Þzx2 0ð Þð Þ :
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, m 5 2m and D~
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, the above equation is reduced to Eq. (3) in the main

text.
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