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Quantum magnetic phase transition in square-octagon lattice was investigated by cellular dynamical mean
field theory combining with continuous time quantum Monte Carlo algorithm. Based on the systematic
calculation on the density of states, the double occupancy and the Fermi surface evolution of square-octagon
lattice, we presented the phase diagrams of this splendid many particle system. The competition between the
temperature and the on-site repulsive interaction in the isotropic square-octagon lattice has shown that both
antiferromagnetic and paramagnetic order can be found not only in the metal phase, but also in the
insulating phase. Antiferromagnetic metal phase disappeared in the phase diagram that consists of the
anisotropic parameter / and the on-site repulsive interaction U while the other phases still can be detected at
T = 0.17. The results found in this work may contribute to understand well the properties of some
consuming systems that have square-octagon structure, quasi square-octagon structure, such as ZnO.

he discovery and classification of quantum phases of matters and the transition between these distinctive

phases have been recurring theme in condensed matter physics for many years and still wheel the research-

ers’ extensive interests''*. Notable quantum phases, such as super-conductivity, quantum hall effect, Mott
insulating phase and topological phase, have great significance in theoretical investigations and promising
potential in applications. These exotic phases have been found in many quantum systems with quite common
structure, such as the honeycomb lattice, the triangular lattice, the decorated honeycomb lattice, the kagomé
lattice and so forth'®'. Recently a unique quantum many particle lattice system named square-octagon lattice
have been investigated in theoretical way intensively and a plenty of meaningful results have been presented.
Researchers have found topological phases and the transitions between these novel phases in the square-octagon
lattice that 1/4 and 3/4 filled with fermions under the framework of the tight binding model through considering
the spin-orbit coupling fermions®”. Another one theoretical joy models named Fully packed loop model also has
been adopted to investigate the square-octagon lattice”. Additionally, researchers have found quasi square-
octagon structure in (1010) surface of functional material ZnO by first principle calculations and aberration-
corrected transmission electron microscopy (ACTEM) observation experimentally during its pressure induced
phase transition process™.

However, few of the previous work related to the square-octagon lattice considered the particles’ on-site
repulsive interactions that have crucial effect on the properties of the systems. Therefore in this work, the
celebrated Hubbard model®**® was used to describe this strongly correlated many particle systems for the
purpose of understanding well the influences of interaction on the properties of the square-octagon lattice
with fermions. The cellular dynamical mean field theory (CDMFT)**, which maps the lattice to a self-
consistent embedded cluster in real space, was adopted to deal with the Hubbard model and the continuous
time quantum Monte Carlo (CTQMC)* algorithm was used as a impurity solver to deal with the mean field
equations. The CDMFT is proved to be more successful than the dynamical mean field theory and the
CTQMC is more accurate than the general quantum Monte Carlo method. Based on the single-particle
Greens function given by the CDMFT and CTQMG, the single-particle density of states and the double
occupancy which play critical role in the identification of Mott metal-insulator transition have been calcu-
lated. The phase diagram which composed of the on-site interaction and the energy gap, the relationship
between the interaction and magnetic properties of the systems also have investigated through defining the
magnetic order parameter. We also presented phase diagram which consists of the competition between the
temperature and on-site repulsive interaction for isotropic square-octagon lattice and the the competition
between the anisotropy and on-site repulsive interaction.
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Results

Strongly correlated square-octagon lattice system. The square-
octagon lattice is a bipartite lattice that can be thought of as a
square lattice in which each vertex has been decorated with a tilted
square, as shown in Fig. 1 (a) and its first Brillouin zone in Fig. 1 (b). It
has the same coordination number as the honeycomb lattice has and
its boundary shapes armchair. It enjoys the symmetry of the square
lattice and symmetrically it satisfies C4 point group.

The standard Hubbard model is adopted to investigate the square-
octagon lattice and the Hamiltonian can be written as follows,
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1> and ¢;, represent creation and annihilation operator of

fermions with spin ¢ on site i respectively, while #;, =ch% denote
the particle number operator on lattice site i. The value of spin index
o is spin up or spin down. The first two terms in this Hamiltonian
account for the kinetic energy of the system, which is characterized
by the coefficient factor t; and t,. t; represents the hopping between
the nearest neighboring sites in the same square lattice and t, is the
hopping between the endpoints of the liking line of the two nearest
neighboring square lattice. The third term describes the on-site
repulsive interaction (U > 0) between fermions with opposite spin.
Here we set t; as energy unit (f; = 1). u is chemical potential and in
order to reach half filled case u should equals zero for this lattice
system. We also defined an anisotropic parameter A which equals to
the ration t,/t, (4 = t,/t,).

For the case of U = 0 and u = 0, the Hubbard model transmits to
the tight binding model and the Hamiltonian in the momentum

where ¢

space is Hy= ), ‘Png‘Pk, in which Wi = (ciep> Cokp> C3kps Cakps
Cikl> Caky» C3k)> Cak))"- The index i = 1, 2, 3,4 in creation and anni-
hilation operators represent the four sites in each unit cell as illu-
strated in Fig. 1 (a) and k is the locations in the first Brillouin zone. T
and | hint the spin-up and spin-down states respectively. H} takes
the following form
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Since Hy is decoupled in spin states, so Hj is block diagonalized,
i.e. two blocks representing spin-up and spin-down electrons are the
same. The energy band of the first Brillouin zone of the square-lattice
under the frame of the tight biding model has been obtained through
diagonalizing 7} and shown in Fig. 1 (c). The density of states of the
square-octagon lattice half filled with fermions without interaction at
T = 0.2 for different anisotropic parameter / in Fig. 1 (d).

In order to get the effect of anisotropic parameter 4 and the value
of hopping term t; and #, on the phase transitions, we presented the
energy band along the line between the high symmetric points in the
first Brillouin zone in Fig. 2 even has shown the 3-dimensional
energy band in the first Brillouin zone in Fig. 1 (c). The energy band
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Figure 1| Sketch of square-octagon lattice. (a) Sketch of the square-octagon lattice and illustration of the nearest-neighbor hopping t; and t,, where t;
and t, represents the hopping factors between the nearest-neighboring sites in the same square and between the endpoints of the different squares’ linking
line, respectively. (b) Structure of the first Brillouin zone of square-octagon lattice. (c) Energy band in the first Brillouin zone of the square-octagon lattice.
(d) Density of states of the square-octagon lattice without interaction for different anisotropic parameter A while T = 0.2.
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Figure 2 | Energy band of isotropic square-octagon lattice along the line between high symmetric points in the first Brillouin zone. t, fixed for all case
and equals 1. (a) The band Ek, and Ek; contact each other at I" point and M point for A = 2.0 and the system is in metallic state. (b) Energy band Ek,, Ek;
and Ek, cross at I" point while Ek,, Ek, and Ek; cross at M point for A = 1. (¢) The band Ek, and Ek, contact at M point while the band Ek; and Ek, contact
at I point for A = 0.83 and the system is still in metallic states. (d) The band Ek, and the band Ek; are completely separated by Fermi energy level and the
system turns into insulating states.

Ek, and Ek; touch at I" point and M point for 4 = 2.0 in Fig. 2 (a).

Energy band Ek,, Ek; and Ek, cross at I point while Ek;, Ek, and Ek;
. S L . 0.16
cross at M point for 4 = 1, the system is in metallic states. It can be
seen that with the decreasing of anisotropic parameter 4, Ek, and Ek; 4
separate and meanwhile Ek,; and Ek;, contact at M point, Ek; and Ek, = 0.12
contact at I' point while 4 = 0.83. The system is still in metallic B
states. As Fig. 2 (d) shows that energy band Ek, and Ek; completely 4= 0.08
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Figure 3 | Double occupancy of the square-octagon lattice. (a) The ®

evolution of the double occupancy as a function of on-site repulsive

interaction U for different temperature T. The arrows hint the Figure 4 | Density of states of the isotropic square-octagon lattice.

corresponding value of Mott transition for different temperature. (b) is the
value of the double occupancy under certain temperature for different on-
site repulsive interaction U.

(a) depicts the density of states for the different temperature T while the
interaction fixed at U/t; = 6. (b) shows the density of states for different
interaction U while the temperature fixed T/t; = 0.5.
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separated by the Fermi energy level while 2 = 0.5 and the system
turns into insulating states.

Phase diagrams of the square-octagon lattice. With the increase of
on-site repulsive interaction U the the probability of more than one
fermions occupying the same lattice site will reduce and eventually
only one fermion confined in per lattice site at certain large value
of U. The confinement of fermion in one lattice site is described
by double occupancy (Docc)*® which is an important quantity
that used to characterize the critical point in Mott phase
transitions and indicates the transition order, and also can be
used to describe the localization of the electrons in strongly
correlated electron systems. The formula of double occupancy is

Docc=0F/dU= izl (nin;) ), where F is free energy. The double

occupancy of isotropic square-octagon lattice as a function of
interaction for fixed temperature and as a function of temperature
for fixed interaction have been shown in outer part and inner part of
Fig. 3 respectively. It can be seen in the outer part of Fig. 3 that Docc
decreases as the interaction increases due to the suppressing of
the itinerancy of the atoms. When the interaction is stronger
than the critical interaction of the Mott transition, the effect of
the temperature on Docc is weakened and Docc for different
temperatures consistently trend to zero, which shows the
temperature does not affect the double occupancy distinctly. The
continuity of the evolution of the double occupancy by interaction
shows that it is a second-order transition. We also have shown the
relation between Docc and the temperature at different interaction in
inner part of Fig. 3. From the inner part of Fig. 3 we can find that the

(a_ 1) =2.0 (a_2)

Ky

double occupancy decreases with the increase of the temperature for
fixed on-site repulsive interaction.

The density of states is one of the most important quantities in the
characterization of the Mott metal-insulator phase transition of
Hubbard model. For the purpose of investigating the Mott metal-
insulator phase transition as the evolution of single particle spectral*,
we defined Density of states, the formula is

4

D(0)= == 3 (1mGy(w—id)), (3)

=

where i is the lattice points index in the cluster. The Density of states
can be derived from the imaginary time Greens function G(t) by
using the maximum entropy method*. Fig. 4 (a) and (b) respectively
shows the density of states of isotropic square-octagon lattice for
different temperature at U/t; = 6 and the density of states for dif-
ferent repulsive interactions while T/t; = 0.5. The inner part of Fig. 4
(a) is the density of states of system for U/t; = 0 and T/t; = 0.17. It
can be evidently seen in Fig. 3 that the systems will change from metal
state to Mott insulating state which characterized by the opened gap
at @ = 0 with the increase of the repulsive interaction for fixed
temperature and the decrease of the temperature for the fixed repuls-
ive interactions. However, the evolution shape of the density of states
with the change of frequency in this two cases is much different from
each other. The critical point between paramagnetic metal state and
Mott insulating state is (T/t; = 0.17, U/t; = 6), (T/t; = 0.25, U/t; =
7) and (T/tl = 0.5, U/tl = 8).

In order to describe the Fermi surface evolution, we defined the

1
spectral function A(k;w=0)z—Elimwn_,OImG(k,iwn). A linear

A=1.0

(a_3)
.

Figure 5 | Fermi surface evolution of the square-octagon lattice. pictures in the every same row depict the Fermi surface evolution for fixed interaction
and different anisotropic parameters while the pictures in the same column shows the Fermi surface evolution for fixed anisotropic and different

interaction. Peaks in the diagrams represent the dominant spectral weight of electrons with zero energy in momentum space and thus correspond to the
location of Fermi surface. With the increase of U and 4, the renormalization effect becomes stronger and the distribution spread. Fermi surface evolution

is obtained at temperature T/#, = 0.1.
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extrapolation of the first two Matsubara frequencies is used to estim-
ate the self-energy to zero frequency. The Fermi surface of isotropic
square-octagon lattice half filled with fermions for different inter-
action U/t at fixed temperature T/¢; = 0.1 is shown in Fig. 5 (a_ 2),
(b_2) and (c_ 2). We also have shown the Fermi surface of aniso-
tropic square-octagon lattice in Fig. 5 for U/t; = 4, 6, 8 while T/t; =
0.1. With the decreasing of the / for fixed interaction the amplitude
of the spectral weight becomes bigger due to the localization of
particles.

Based on the systematic calculations on the quantities mentioned
above, we have presented the T - U phase diagram of isotropic
square-octagon lattice and the competition between anisotropic
parameter A and the on-site repulsive interaction (U) for fixed low
temperature T/t; = 0.17. We also studied the magnetic properties of
each phase in the square-octagon lattice by using the magnetic order

1
parameter m= ﬁzz (<n,¢> — <”il>)> where (n;,) is the electron
c
density at lattice site i with spin index ¢ and sign(i) = 1ifi = 1, 3
and sign(i) = —1ifi = 2,4 as shown in Fig. 1(a). From the definition
of magnetic order it can be known that m = 0 correspond to para-

magnetic phase while m # 0 represents antiferromagnetic phase.
Both paramagnetic and anti-ferromagnetic order as shown in
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Fig. 6 (a) and (b) have been not only found in insulating state but
also in the metal state in the T - U phase diagram of isotropic square-
octagon lattice. Fermi surface evolution of isotropic square-octagon
lattice in paramagnetic metal state in Fig. 6 (c) and in antiferromag-
netic metal state in Fig. 6 (d) for for U = 5.5and T = 0.17. As shown
in Fig. 6 (e) that only at low enough temperature or weak enough on-
site repulsive scale the systems can transform to antiferromagnetic
metal state. The narrow antiferromagnetic metal state region in Fig. 6
(e) means this state is sensitive to the temperature and the on-site
repulsive interaction. This results have been confirmed further by the
relation between the energy gap and on-site repulsive interaction and
the magnetic order parameter m and the on-site repulsive interaction
in Fig. 7. The anti-ferromagnetic metal state disappeared in the com-
petition of anisotropic parameter A and interaction diagram while
other phases still exist at T = 0.17.

Discussion

In this work, we use standard Hubbard model to describe the square-
octagon lattice and present the quantum magnetic phases and the
transition between these novel phases in this many particle systems.
We have investigated not only the effect of on-site repulsive inter-
action of particles with the opposite direction spin on the same site,

(b)

(d) Antlferromagnetlc metal
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Figure 6 | Phase diagrams of the square-octagon lattice. (a) is the sketch of the anti-ferromagnetic order and (b) is for paramagnetic order of square-
octagon lattice. (c) Fermi surface evolution of isotropic square-octagon lattice in paramagnetic metal state for T = 0.17. (d) Fermi surface evolution of
isotropic square octagon lattice in antiferromagnetic metal state for T = 0.17. (e) Competition between the temperature T and on-site repulsive
interaction U for A = 1. The black line is the boundary between metal phase and insulator phase while the red one distinguishes the paramagnetic (PM)
phase and anti-ferromagnetic (AFM) phase. (f) 4 - U phase diagrams of the square-octagon lattice for T = 0.17. The anti-ferromagnetic metal phase will
disappear at the high enough temperature while the rest of phases still can be found.
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Figure 7 | Relationship between energy gap and the on-site repulsive
interaction. (a) depicts the relationship between energy gap and
interaction for T = 0.1 while (b) for T = 0.5. For T = 0.1,
antiferromagnetic state appears before the appearance of the insulating
state while the antiferromagnetic state disappear for T = 0.5. The right
vertical axes in (a) and (b) shows the magnetic properties of each state.

but also shown the influence of the Kinetic energy of the systems on
the phase transitions. We also have studied the magnetic properties
of the square-octagon lattice through defining the magnetic order
parameter m. We hope the results found in this study can be useful
for understanding the property of this lattice and the real materials
with this structure, even can be helpful for the research on the func-
tional material ZnO with quasi square-octagon lattice.

Methods

Cluster dynamical mean-field theory. The cellular dynamical mean-field theory
(CDMFT) was used to investigate this many particle square-octagon lattice. In
comparison to the general dynamical mean field theory, the cellular dynamical mean
field theory gives much more reliable simulation results for low-dimensional system
with strong quantum fluctuations due to its efficient consideration of the nonlocal
effect. In our case, the cellular dynamical mean field theory maps the original square-
octagon lattice onto a 4-site effective cluster embedded in a self-consistent bath field,
as shown in Fig. 1 (a). At the beginning of the self consistent calculation process, we
guess a mini self-energy X(iw) which is independent of momentum® and the Weiss
field Go(iw) can be obtained by the coarse-grained Dyson equation:

Gy i) = <;m> +X (i), 4

where w is Matsubara frequency, p is the chemical potential, Xk is the summation all
over the reduced Brillouin zone of the super-lattice. #(K) is 4 dimensional hopping
matrix of super-lattice which drawn from the square-octagon lattice under the
framework of cluster dynamical mean field theory.

Continuous-time quantum Monte-Carlo algorithm. The continuous-time
quantum Monte-Carlo (CTQMC) algorithm was used as impurity solver. The
CTQMC is based on a series expansion for the partition function in the powers of
interaction and the partition function is

5 K
Z=Te M =27,T, {Z% <7 OHl(r)dr) } (5)

k

where T, is time-ordering operator, H; (t) = ¢ H;e~"® and H, is Hamiltonian in
interaction picture, Zy = T,e "™ is the partition function for the unperturbed term.
Through inserting H; = UZn;n;, into the partition function and using Wick’s
theorem further to reform ordering operators in partition functions. The ordering
operators can be expressed by the determinants of matrix which consist of the non-
interacting Green functions G°. The new self-energy X(iw) is recalculated by the
Dyson equation:

2(iw) =Gy ! iw) — G (iw). (6)

The cluster Green’s function G(iw) can be obtained by CTQMC and 1 X 10° QMC
sweeps are carried through for each CDMFT loop*. The cluster Green’s function both
in imaginary time and at Matsubara frequencies:

G(r—f)zGo(‘r—r/)—GO(T—r,v)M,-JGO(rj—‘c), (7)

G(iw) =Gy (iw) — Go (iw) |:% {Z M,-J-e*w(n—f/) Go(iw) (8)
i

where G (iw) is a bare Green’s function and M;; is the elements of inverse matrix of
matrix that composed of non-interacting Green’s functions. The more details about
CTQMC can be found in the reference herein®.
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