
Phase transitions of the ionic Hubbard
model on the honeycomb lattice
Heng-Fu Lin, Hai-Di Liu, Hong-Shuai Tao & Wu-Ming Liu

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190,
China.

Many-body problem on the honeycomb lattice systems have been the subject of considerable experimental
and theoretical interest. Here we investigate the phase transitions of the ionic Hubbard model on the
honeycomb lattice with an alternate ionic potential for the half filling and hole doping cases by means
of cellular dynamical mean field theory combining with continue time quantum Monte Carlo as an impurity
solver. At half filling, as the increase of the interaction at a fixed ionic potential, we find the single particle
gap decreases firstly, reaches a minimum at a critical interaction Uc , then increases upturn. At Uc , there
is a band insulator to Mott insulator transition accompanying with the presence of the antiferromagnetic
order. Away from half filing, the system shows three phases for the different values of hole density and
interaction, paramagnetic metal, antiferromagnetic metal and ferromagnetic metal. Further, we present the
staggered particle number, the double occupancy, the staggered magnetization, the uniform magnetization
and the single particle spectral properties, which exhibit characteristic features for those phases.

T he correlation effects in the honeycomb lattice systems have been extensively studied, which result in a
number of exotic phenomena in both theory and experiment, such as the correlated electrons in the
graphene1,2 and Silicene3–5, topological Mott insulator6 and quantum spin liquid7,8. Most of those studies

are based on the standard Hubbard model, one of the most popular models in the strongly correlated system. For
half-filling case, the electrons on the honeycomb lattice are described by a non-interacting massless Dirac fermion
model with linear low energy dispersion relation. The system is semimetal, in which the Fermi surface are only six
isolated points at the corners of the Brillouin zone. For the peculiar nature of the Fermi surface, the interaction
effects can be suppressed by the low density of states in the Fermi level9–12. Away from the half-filling, the different
behavior will arise in this system13. For example, at the 3=8 or 5=8 filling, the system shows many weak coupling
instabilities to various ordered states, including spin density waves14, Pomeranchuk metal15, and p/d-wave
superconductors16–18.

Recently, a new class of two dimensional materials LixMNCl (M~Hf ,Zr) has been found19–21, which is formed
on a single layer honeycomb lattice consisting of alternating ‘‘M’’ and ‘‘N’’ orbitals with a level offset.
Experimental results show that LixMNCl supports a unconventional superconductor19,22. The origin of super-
conductivity can be revealed based on the ionic-Hubbard model on the honeycomb lattice with the staggered
lattice potential. The ionic Hubbard model, an extended version of the Hubbard model, was proposed to explain
the neutral-ionic transition in the quasi-one-dimensional charge-transfer organic materials23. It has also been
proposed to investigate the band insulator to Mott insulator transition, such as the one dimension system24,25 and
two dimension square lattice system26. However, the charge dynamics with spins and the phase diagram of this
model on the honeycomb lattice have not been studied. Moreover, the ionic Hubbard model on the honeycomb
lattice can also be realized by cold atoms loaded in the optical lattices27–32, in which the on-site interaction,
hopping amplitude, doping, and temperature can be fully controlled using Feshbach resonances, changing the
lattice depth, changing the number of fermions, and varying the cooling time.

The dynamical mean field theory (DMFT)33 and its cluster extensions34,35 are powerful method to investigate
the strongly correlated system, due to the efficient description of the quantum fluctuations. The cellular dynam-
ical mean field theory (CDMFT)35 is one of the cluster extensions of DMFT, and the cluster is constructed in real
lattice space. In contrast to a single site is chosen to construct the self-consistent equation in DMFT, the CDMFT
picks up a cluster. This makes it is possible to include short range spatial fluctuations inside the cluster, which are
important in the low dimensional systems. This method have been used to study the correlation effects on the
honeycomb lattice and square lattice, such as Mott transition36,37, topological phase transition38 and charge order
insulator transition39,40.
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In this paper, we study the phase transitions of the ionic Hubbard
model on the honeycomb lattice as a function of the hole doping and
temperature. We adopt the CDMFT combined with the continuous
time quantum Monte Carlo method (CTQMC)41,42. In order to deter-
mine the phase diagram, we calculate the staggered particle number,
the double occupancy, the staggered magnetization, the uniform
magnetization and the single particle spectral properties. At half
filling, the system goes from a paramagnetic band insulator phase
to an antiferromagnetic Mott insulator phase with the increase of the
interaction. At small hole doping, the system has two phases, a para-
magnetic metal for weak interaction and an antiferromangetic metal
for large interaction. For finite hole doping above a critical value, the
system shows three phases, a paramagnetic metal at weak interaction
region, a antiferromagnetic metal at intermediate interaction region,
then a ferromagnetic metal at strong interaction region.

Results
The strongly correlated honeycomb lattice with staggered
potential. We consider the ionic Hubbard model on the
honeycomb lattice (see inset in Fig. 1). The system is composed of
two alternating sublattices A and B. The Hamiltonian can be written as

H~{t
X

i[A,j[B,s

(c{iscjszH:c:)zU
X

i

ni:ni;zD
X
i[A,s

nis

{D
X
i[B,s

nis{m
X

i,s

nis; ð1Þ

where c{is(cis) creates (destroys) an electron with spin s at site i. t is the
hopping amplitudes of fermions over nearest-neighbor sites, and
we set t~1:0 as the unit energy. U (Uw0) is the amplitude of the on-
site repulsive interaction, and D is a staggered one-body potential on the
two sublattices in each unit cell, which is also called the ‘‘ionic" potential.
The last term, the chemical potential m is fixed so that the average
occupancy is (hnAizhnBi)=2~n~1{d, where d is the hole density.

We begin with the tight-binding Hamiltonian with staggered
potential on the honeycomb lattice, corresponding to that the
interaction U~0 in the ionic Hubbard model. After the

fourier transformation, we can get the dispersion of the free
electrons,
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjkj2zD2

q
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In this system, there are two bands, and the energy gap of the two
bands DE~2D. From the tight binding model analysis above, we
can learn that the system can be adjusted to various phases: a
semimetal when staggered potential D~0 and hole doping density
d~0, a band insulator when staggered potential D=0 and hole
doping d~0, and a normal metal when staggered potential D=0
(or D~0) and hole doping d=0. In this paper, we mainly study the
correlation effects in the band insulator and hole doping band
insulator.

Phase diagram of the ionic Hubbard model. In this section, we
summarize our main results of the ionic Hubbard model on the
honeycomb lattice, deferring the details of how they were obtained
to the following sections. The phase diagram as a function of
interaction U for half filling and hole doping at staggered potential
D~0:4 and temperature T~1=20 obtained from the analysis using
6-site cluster is shown in Fig. 1. The results obtained using 8-site
cluster are also shown to quantitatively see the cluster-size
dependence. In the noninteracting limit U~0, the system is band
insulator and normal metal at half filling and hole doping cases,
respectively. With the increase of the interaction U , the system
shows two phases for the half filling case, corresponding to the
band insulator and the antiferromagnetic Mott insulator, and the
two phases separate at the critical interaction U~UAF : 4:2. Below
the critical interaction UAF , the energy gap in the band insulator are
the same for both spin components and decrease as the interaction
increasing. In the Mott insulator phase, the single particle energy gap
are different for both spin components, such as DE;vDE:. And the
Mott gap increase monotonously with the increase of the interaction.

For the small hole doping case, the system goes a phase transition
from paramagnetic metal to antiferromagnetic metal when changing
the interaction U . At the hole density d~0:03, the phase transition
occurs at critical interaction U~U1e4:1. For finite hole doping
above a critical value, there are three phases at different interaction,
corresponding to paramagnetic metal, antiferromagnetic metal, and
ferromagnetic metal. For example, at hole doping d~0:1, the system
is paramagnetic metal below a critical interaction UvU1e3:8, fer-
romagnetic metal above another critical interaction UwU2e5:9, and
antiferromagnetic metal between those two interaction U1vUvU2.

In Fig. 1, we also present the results for the 8-site cluster. In this
case, the properties of this system are qualitatively same, but the
phase boundary shifts a little, such as, in d~0:1, the phase transition
of paramagnetic metal to antiferromagnetic metal is at U~U1e3:6
(U~3:8 for 6-site cluster), and the antiferromagnetic metal to fer-
romagnetic metal is at U~U2e5:8 (U~5:9 for 6-site cluster). We
describe below in details of the spectral and magnetic properties that
lead to this diagram.

Local quantities and spectral properties for the half filling case
d~0. In this section, we firstly try to understand the correlation
effects on the band insulator on the honeycomb lattice. We
concentrate on the half-filling case d~0 for different values of the
staggered potential D with the average occupancy n~1. In the
noninteracting limit, the system prefers a band insulator phase, in
which most of the electrons stay on a sublattice with lower potential,
resulting in zero density of states in the Fermi surface. When the local
interaction is turned on, the band insulator competes with the Mott

Figure 1 | Phase diagram of the inonic Hubbard model on the honeycomb
lattice. Phase diagram of the inonic Hubbard model on the honeycomb lattice

at staggered potential D~0:4 and temperature T~1=20. Solid lines and dash

lines are the results obtained using the 6-site cluster and 8-site cluster,

respectively. At half filling, the small U band insulator becomes an

antiferromagnetic insulator at UAF . Upon doping, the system shows three

phases as the alteration of the interaction strength: paramagnetic metal,

antiferromagnetic metal and ferromagnetic metal. Inset: The typical clusters

used within the cellular dynamical mean field theory.
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insulator with one electron per lattice site. In Fig. 1, the phase
diagram give us the results of the band insulator to Mott insulator
at D~0:4 and d~0. Here we will give more detailed description on
the results for different values of staggered potential D.

In order to examine how the system evolves with the variation of
the local interaction, we firstly calculate the four local quantities:
staggered charge density dn, double occupancy Docc, staggered mag-
netization MS, and uniform magnetization MF . The staggered charge
density and double occupancy are related with the charge fluc-
tuation, the staggered magnetization and the uniform magnetization
give us the information about the spin fluctuation. The staggered
charge density is defined by the difference between the particle num-
ber densities at two sublattices,

dn~(nB{nA)=2, ð4Þ

where the sublattice number densities can be calculated as

na:
2

Nc

X
m[a

X
s
hnmsi for a~A and B, Nc is the site numbers of

the cluster. We also calculate the double occupancy defined by

Docc~
1

Nc

X
m

hnm:nm;i: ð5Þ

The staggered magnetization and uniform magnetization are
defined as

MS~(mBz{mAz)=2, ð6Þ

and

MF~n:{n;~(mAzzmBz)=2 ð7Þ

respectively, where the sublattice magnetization is calculated as

maz~
2

Nc

X
m[a

(hnm:i{hnm;i) for a~A and B.

The results for the staggered charge density dn and the double
occupancy Docc as a function of interaction U for temperature
T~1=20 are shown in Figs. 2(a) and 2(b). Due to the staggered
on-site potential, dn is always nonzero, even thought the Hubbard
U tries to suppress it. dn decreases monotonically as a function of
U , and shows no discontinuity at UAF . In the weak interaction region,
the electrons prefer to gather on the lower potential sublattice B. The

system experiences an imbalance between the two sublattice, result-
ing in higher double occupancy, compared with the Hubbard model
when D~0 and a nonzero staggered charge density. Such tendencies
become stronger asD grows. In the ionic limitD§t, it is energetically
favorable that all the electrons are in the sublattice B, producing unity
of the staggered charge. As U increasing, the energy cost of two
electrons to stay in the same site becomes large, both the double
occupancy and the staggered charge density decrease monotonically
with the imbalance between the two sublattices become weaker. In
the strong coupling limit, the staggered charge density is close to 0.

In Figs. 2(c) and 2(d) we plot the staggered magnetization MS and
uniform magnetization MF as a function of interaction U for tem-
perature T~1=20 respectively. For a given D, there exists a threshold
value UAF at which the staggered magnetization turns on with a
jump. Both the value of the UAF and the amplitude of the jump in
Ms are decreasing functions of D. In the half filling case d~0, the
uniform magnetization MF is almost zero, independent of the stag-
gered potential D and interaction strength U .

The local density of states provide more detailed information
on the single particle properties. The spin-resolved single particle
density of states are computed as follows

rs(v)~{
X
k,a

ImGs
aa(k,vz)=p; ð8Þ

where s is the spin, a~A,B, and v is measured from the chemical
potential m. The density of states are derived from the imaginary time
Green’s function G(t) using maximum entropy method43. The local
density of states are shown in Fig. 3 for several values of U at staggered
potential D~0:5. For a quantitative analysis of the gap around a Fermi
level, we investigate the spectral gap DE: and DE; for both spin com-
ponents which are defined as the energy difference between the highest

Figure 2 | Four local quantities as a function of interaction U for the half
filling case. Four local quantities as a function of interaction U for

temperature T~1=20 and various D values. (a) Staggered charge density dn.

(b) Double occupancy Docc. (c) Staggered magnetization MS. (d) Uniform

magnetization MF .

Figure 3 | Spin-resolved single particle density of states rs(v) for the half
filling case. Spin-resolved single particle density of states rs(v) as a

function of v for D~0:5. (a1) and (a2) Band insulator for U51.0 with

large band gap and spin symmetry of the rs(v) . (b1) and (b2) Band

insulator for U53.0 with small band gap and spin symmetry of the rs(v),

(c1)and (c2) Mott insulator for U56.0 with large Mott gap and without

spin symmetry of the rs(v).
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filled and lowest empty levels in the local density of states. Fig. 4 shows
the spectral gap as a function of the interaction strength U forD~0:5 at
temperature T~1=20. In the noninteracting system U~0, the local
density of states can be computed analytically and is composed of two
bands which are separated by a band gap D due to the staggered poten-
tial. For weak interaction, the local density of states are the same for both
spin components. However the band gap around a Fermi level decreases
monotonically with the increase of interaction in this region. For
example, the density of states for two spin components at interaction
U~1:0 and U~3:0 are shown in Figs. 3(a1)(a2) and Figs. 3(b1)(b2)
respectively, the band gap at U~3:0 is smaller than U~1:0. The local
density of states displays a minimum spectral gap at a critical value of
interaction U , U~4:5 for up-spin component and U~5:0 for down-
spin component. When U above the critical value, the gap between the
two bands in turn is enlarged, and the system goes to the Mott insulator
phase. In this region, the local density of states for up-spin component
and down-spin component show different behaviors (Figs. 3(c1)(c2).
The Mott gap of the up-spin component is bigger than the down-spin
component.

Local quantities and spectral properties for the hole doping case
d=0. In this section, we now turn to study the phase transitions of
the hole doping (d=0) band insulator as a function of the interaction on
the honeycomb lattice. The average occupancy nv1, resulting in finite
density of states in the Fermi level. The system is a metal, and the low
energy physics can be described by the Fermi liquid theory. When the
interaction is turned on, there are many instabilities for the Fermi
liquids, which is an enduring theme research in condensed matter
physics. When the staggered potential D~0:4 and the temperature
T~1=20, the phase diagram for different values of hole doping d is
displayed in Fig. 1. For small hole doping d, the system goes a phase
transition from paramagnetic metal to antiferromagnetic metal at a
critical interaction U1. At finite hole doping d above a critical value,
the system has three phases as the interaction U varying, paramagnetic
metal when UvU1, antiferromagnetic metal when U1vUvU2, and
ferromagnetic metal when UwU2. Now we discuss how we use the
single particle spectral and other local qualities to determine the phase
boundaries U1 and U2.

Firstly, let us study the single particle density of states as a function
of interaction for various hole doping. Fig. 5 shows the single particle
density of states rs(v) for both of the spin components at hole

doping d~0:1 and staggered potential d~0:4. The single particle
density of states rs(v) are obtained from Eq.(8). With the increase of
the interaction, the spectral weight is continuously transferred to the
higher energy states, the chemical potential lies inside the lower band
for both spin components all the time. When U~1:0, in the para-
magnetic metal region, the density of states for both spins are the
same, and there are two the spectral peaks above and below the Fermi
level (Figs. 5(a1) and 5(a2)). When U~4:5, corresponding to the
antiferromagnetic metal, the antiferromagnetic order sets in, making
the density of states and gaps a little different for the two spin com-
ponents (Figs. 5(b1) and 5(b2)). When U~6:0, in the ferromang-
netic metal region, the density of states for the two spin components
are renormalized much and very different (Figs. 5(c1) and 5(c2)).
In both the antiferromagnetic metal and ferromagnetic metal, one of
the spectral peaks above the Fermi level is suppressed.

Besides the changes of the local density of states, the interaction
will influence the momentum-resolved spectral density in the Fermi
level A(k,v~0) very much. The k-resolved spectral weight can be
defined as

A(k,v~0)<
1

2p
limvn?0

X
s

ImGs(k,ivn), ð9Þ

which are the maxima of the spectral weight at zero temperature as a
function of k. In Fig. 6 we present A(k,v~0) for the three different
phases at hole doping d~0:1 and staggered potential D~0:4. In the
hole doping case, the Fermi surface A(k,v~0) are six rings in the K and
K 0 points located at the corners of the hexagon. When the interaction
is small U~1:0, corresponding to paramagnetic metal, the Fermi
surface is only weakly renormalized compared to the case of the inter-
action U~0 (Figs. 6(a1)(a2)). In the intermediate interaction region
U~4:5, corresponding to antiferromagnetic metal, the distribution of

Figure 4 | Spectral gaps of the two spin components DEs. Spectral gaps of

the two spin components DE: and DE; as a function of the interaction

strength U for D~0:5 at temperature T~1=20. With the increase of U the

spectral gap decreases for weak interaction while it grows larger in the

region of strong interactions.

Figure 5 | Spin-resolved single particle density of states rs(v) for the hole
doping case. Spin-resolved single particle density of states rs(v) as a

function of v for D~0:4 at hole doping d~0:1 and temperature T~1=20.

(a1) and (a2) Paramagnetic metal for U51.0 with spin symmetry of the

rs(v). (b1) and (b2) Antiferromagnetic metal for U54.5 with spin

symmetry of the rs(v), (c1)and (c2) Ferromagnetic metal for U56.0

without spin symmetry of the rs(v).
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quasi-particle spectral near the K and K 0 points became anisotropic in
different directions in each corners (Figs. 6(b1)(b2)). In the large inter-
action region U~6:0, corresponding to ferromagnetic metal, the Fermi
surface are strongly renormalized at each corners, the peak of
A(k,v~0) are broadened (Figs. 6(c1)(c2)).

In addition to the spectral properties, we also calculate four local
quantities: the staggered charge density dn, the double occupancy
Docc, the staggered magnetization Ms, and the uniform magnetiza-
tion MF obtained from Eqs.(4), (5), (6) and (7), respectively.
Figs. 7(a)(b) show the staggered charge density dn and the double
occupancy Docc as a function of U for hole doping d~0:05, d~0:06
and d~0:1 at staggered potential D~0:4. Although the system is
metallic all the times, with the increase of the interaction, both of the
two quantities decrease monotonically. Figs. 7(c)(d) show the stag-
gered magnetization MS and the uniform magnetization MF as a
function of interaction for hole doping d~0:02, d~0:06 and
d~0:1 at staggered potential D~0:4. For small hole doping, such
as d~0:02, the system shows a phase transition from paramagnetic
metal to antiferromagnetic metal in which the staggered magnetiza-
tion MS turns on a finite value at U~U1, and the uniform magnet-
ization MF is zero all the time. When the hole doping above a critical
value, such as d~0:06 and d~0:1, the magnetic properties shows
dramatic changes at the phase boundaries U1 and U2. For small
U , UvU1, the magnetic order is not favored. For intermediate
U , U1vUvU2, there is a nonzero staggered magnetization MS.
When the U is large, UwU2, the nonzero staggered magnetization
MS is suppressed, the uniform magnetization MF becomes a none-
zero value. Both of the staggered magnetization MS and the uniform
magnetization MF increase with the increase of the hole doping d.

Discussion
In this work, we have investigated the effect of on-site interaction
and staggered ionic potential in a band insulator and doped band

insulator on the honeycomb lattice based on the ionic Hubbard
model. By means of the cellular dynamical mean field theory comb-
ing with continue time Monte Carlo method, we construct a phase
diagram as a function of interaction and hole doping. At half filling,
although the single particle spectral functions always posses a energy
gap, the system shows a band insulator to Mott insulator transition at
a critical interaction Uc, with the single particle gap decreases firstly,
reaches a minimum at a critical interaction Uc, then increases upturn,
and the antiferromagnetic order gives a finite value above Uc. Away
from half filing, many metallic phases with magnetic order are found,
in order to exhibit characteristic features of the phases, the behavior
of the staggered particle number, the double occupancy, the stag-
gered magnetization, the uniform magnetization and the single par-
ticle spectral properties have bend studied. At small hole doping, the
system goes a phase transition from a paramagnetic metal to an
antiferromangetic metal with the increase of the interaction. For
finite hole doping above a critical value, the system shows
three phases, a paramagnetic metal at weak interaction region, a
antiferromagnetic metal at intermediate interaction region, then
a ferromagnetic metal at strong interaction region.

We get itinerant metals with spin density wave state which are an
interesting class of materials where electrons show spin polarization
or staggered spin polarization behavior. They have applications in
spintronics as they can generate spin-polarized currents44–46. And the
materials with the honeycomb lattice structure are very common,
such as single layer graphene, silicene considered as the silicon-based
counterpart of graphene, and monolayer molybdenum disulfide
(ML-MDS), MoS2, which play a vital role in nanoelectronics and
nanospintronics. We hope that our study will motivate a research
on along those lines and open up new possibilities in the area of
spintronics. Moreover, with the development of the cold atom
experiment, the honeycomb lattice have been simulated29,32,47,48,
which can give us a platform to simulate and detect the phase
transitions by loading ultracold atoms on the honeycomb optical
lattices.

Methods
In order to study the ionic Hubbard model in honeycomb lattice which describes the
correlation effects on the band insulator and the hole doped band insulator, the Cellular
dynamical mean field theory are employed. The Cellular dynamical mean field theory is
an extension of dynamical mean field theory, which is able to partially cure dynamical
mean field theory’s spatial limitations. We replace the single site impurity by a cluster
of impurities embedded in a self-consistent bath. The cluster-impurity problem

Figure 6 | The distribution of low energy spectral weight A(k,0) in k

space. The distribution of low energy spectral weight in k space A(k,0) at

temperature T~1=20 for different interactions U . (a1) and (a2) U~1:0,

(b1) and (b2) U~4:5, (c1) and (c2) U~6:0. The right panels are color

plots to see the Fermi surface and left panels are three dimensional plots to

see the variation of A(k,0).

Figure 7 | Four local quantities as a function of interaction U for the hole
doping case. Four local quantities as a function of interaction U for

temperature T~1=20 for various doping d values. (a) Staggered charge

density dn. (b) Double occupancy Docc. (c) Staggered magnetization MS.

(d) Uniform magnetization MF .
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embedded in a bath of free fermions can be written in a quadratic form,

Seff ~

ð?
0

X
ijs

c{isG{1
ijs (t)cjszU

ðb

0
dt
X

i

ni:(t)ni;(t), ð10Þ

where i and j are the coordinates inside the cluster-impurity, and the G{1
s is the

Weiss field. The effective medium G{1
s is computed via the Dyson equation,

G{1
s (ivn)~G{1

s (ivn){1zSs(ivn): ð11Þ

Within cellular dynamical mean field theory, the interacting lattice Green’s
function in the cluster site basis is given by,

G{1
s (ivn)~

X
k

½ivnzm{t(k){Ss(ivn)�{1, ð12Þ

where vn~(2nz1)pT are Matsubara frequencies, m is the chemical potential and
t̂(k ) is the Fourier-transformed hopping matrix for the super lattice. In our analysis,
the 6- and 8-site clusters in the inset of Fig. 1 are used to set up the cluster
Hamiltonian. For the 6-site cluster case, the hopping matrix t(k) of the cluster can be
written as follows (k [ the reduced Brillouin-zone),

0 t 0 t � e{ik :B 0 t

t 0 t 0 t � e{ik :B 0

0 t 0 0 0 t � e{ik :A

t � e{ik :B 0 t 0 t 0

0 t � e{ik :C 0 t 0 t

t 0 t � eik :A 0 t 0

2
666666664

3
777777775
; ð13Þ

where A~a(3,0), B~a(
3
2

,
3
ffiffiffi
3
p

2
), C~a(

3
2

,{
3
ffiffiffi
3
p

2
), are the nearest-neighbor

super-lattice vectors, a is the lattice constant. In each iteration, in order to solve the
effective cluster model and to calculate Gs , we use the weak coupling interaction
expansion continuous time quantum Monte Carlo method.

The CDMFT iteration procedure is summary as follows. Given a cluster self-energy
Ss, we can compute G{1

s via Eq.(5)(6), then solve the effective cluster model and to
calculate a new Gs . Then us Eq.(5) again, we can get a new cluster self-energy Ss .
Repeat the procedure until the results are convergence.

The weak coupling interaction expansion continuous time quantum Monte Carlo
method is efficient method to treat the impurity model. The method employs same
tricks, which used to derived Feynman perturbation theory, to stochastically generate
the partition function Z~Trexp({bH). In the interaction picture,

exp({b(H0zHI ))~exp({bH0)Ttexp({

ðb

0
HI (t)dt), where Tt is the time-

ordering operator. The expansion of the partition function in power of U reads

Z
Z0

~
X?
k~0

ð
dt1 . . . dtk

({U)k

k!
hTtni1:(t1) . . . nik:(tk)i|hTtni1;(t1) . . . nik;(tk)i

~
X?
k~0

ð
dt1 . . . dtk

X
i1 ...ik[Nc

({U)k

k!
P det½D:

kD;
k �; ð14Þ

where (Ds
k )ij~Gijs(ti{tj) and Nc is the number of the sites of the cluster. The

observable expectation value hOi~ 1
Z

Tr(Oexp({bH)) can be sampled during the

Monte Carlo update. For example, the Green’s function

Gijs(t{t
0
)~{

Z0

Z

X?
k~0

ð
dt1 . . . dtk

({U)k

k!
hTtcis(t)c{js(t

0
)

|ni1:(t1) . . . nik:(tk)ni1;(t1) . . . nik;(tk)i~det½Ds
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