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The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs)
systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities,
while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities.
Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-
molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect

of three-body interaction on the localized matter wave solutions. The topological properties of the
localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave
functions depends only on the principal quantum number n, and the numbers of the density packets

for each quantum state depend on both the principal quantum number n and the secondary quantum
number [. When the coupling is not zero, the localized nonlinear matter waves given by the rational
function, their topological properties are independent of the principal quantum number n, only depend
on the secondary quantum number . The Raman detuning and the chemical potential can change the
number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on
the principal quantum number n, while the stability of the rational solutions depends on the chemical
potential and Raman detuning.

It is known that the precise control of untracold atomic systems have brought the realization of Bose-Einstein
condensates (BECs) and Fermi gases. An important challenge is to produce and control more complicated molec-
ular systems because of their potential applications for the tests of fundamental physics and for the drifts of
fundamental constants. To date, several atomic-molecular conversion schemes have been provided!-'°. Among
them, Feshbach resonance®® and photoassociation”® are two main techniques to produce cole molecules from an
atomic BECs. In real experiment, the cold molecules can be produced from a Fermi gas of atoms'"!? or an atomic
BECs based on Feshbach resonance, Raman photoassociation or stimulated Raman adiabatic passage'*~'°. For
example, a two-photon stimulated Raman transition in a ¥Rb BECs has been used to produce ¥ Rb, molecules in
a single rotational-vibrational state'®, where the input Raman laser pulse couples the molecular levels and reduces
spontaneous emission. There is a nonlinear resonant transfer between atoms and molecules, as well as term pro-
portional to the densities in the coupled atomic-molecular BECs. This type of soliton solutions have been studied
in the nonlinear optics'”!® and in the problem of the self-localization of impurity atoms BECs'. The parametric
solitons have been investigated in ref. 20. The coherent dynamics of this coupled atomic-molecular BECs have
also been studied, which shows very rich behaviors, such as exact dark states solution®"??, crystallized and amor-
phous vortices?, Rabi oscillations?* and so on.

The intrinsic nonlinearity is the most remarkable characteristic of the BECs systems. In the past years, many
interesting experiments, for example, the sonic-analogue of black holes, could be explored with spatial mod-
ulation of the interatomic interaction on short length scales. In refs 25 and 26, a promising technique (optical
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Feshbach resonance) is proposed to control the scattering length. With the development of this topic, a successful
control of a magnetic Feshbach resonance of alkali-metal atoms was illustrated in ref. 27. In ref. 28, submicron
control of the scattering length has been demonstrated by applying a pulsed optical standing wave to a BECs of
ytterbium (74Yb) atoms. In recent research, the Nonlinear Schridinger equation (NLSE) or the Gross-Pitaevskii
equation (GPE) with spatially dependent cubic and quintic nonlinearities can be applied to the pulse propaga-
tion on optical fiber?, photonic crystals®, and the study of BECs>*2. The wide localized soliton solutions, the
wide vector solutions, the dark soliton solutions and so on have been worked out*-¢. The localized nonlin-
ear waves in quasi-two-dimensional BECs with spatially modulated nonlinearity and in two-component BECs
with time- and space- modulated nonlinearities are constructed® . However, there is few work considering the
two-dimensional atomic-molecular BECs with space-modulated nonlinearities.

In this paper, we investigate the nonlinear matter waves in the two-dimensional atomic-molecular
Bose-Einstein condensates with space-modulated nonlinearities, which can be described by the coupled GP
equations with space-modulated nonlinearities. We work out three kinds of localized nonlinear wave solutions
for both the attractive spatially inhomogeneous interactions and the repulsive ones by using the similarity trans-
formation®. Our results show that the topological properties of the localized nonlinear matter waves given by the
Jacobi elliptic function can be described by the principal quantum number 7 and the secondary quantum num-
ber J, while the topological properties of the localized nonlinear matter waves given by the rational function are
independent of the principal quantum number #, only depend on the secondary quantum number I. The Jacobi
elliptic solution is linearly stable only for the principal quantum number n = 1, while the stability of the rational
form solutions depends on the chemical potential and Raman detuning.

Results

The coupled Gross-Pitaevskii equation with space-modulated nonlinearity. In real experiment,
the coherent free-bound stimulated Raman transition can cause atomic BECs of #Rb to produce a molecular
BECs of ¥Rb,. If the molecular spontaneous emission and the light shift effect can be ignored*'*?, according to
the mean field theory, the coupled atomic-molecular BECs**~** with three-body interaction term can be written as
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cubic and quintic nonlinearity the strengths of interaction, V!) = i = a, m)are the trapping poten-
tials, M,(M,,) is the mass of atomic (molecule), x is the parametric coupling coeflicient which describes the con-
versions of atoms into molecules due to stimulated Raman transitions. The parameter ¢ characterizes Raman
detuning for a two photon resonance!®*#°, Integrating along the transverse coordinates, the above equations for

the wave functions W,(i = a, m) in dimensionless form can be written as the coupled GP equations
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The unit of length, time and energy correspond to //i/(mw) ( & 1.07 um), w i~ 1.6 x 107%) and Aw,
respectively. In this paper, we use the parameters of atomic-molecular BECs of #Rb system with M,,=2M,=2m
(m=144.42 x 1077 Kg), g,,= 2g, (a,= 101.84ag), where ay is the Bohr radius.

Now we consider the spatially localized stationary solution ¥, = ¢,(x, y)eii”at, v, = ¢,(x, y)eii”mt of ((2))
with ¢,(x, y) (i=a, m) being a real function for lim, ... #;(x, y) = 0. This maps (2) into the following coupled

equations
82¢“ 82% 3 2 5 2,.2 2
ox? pE = 28,95 — 28, PmPa — 2707 — w (x"+ )P,
+ 21,0, + 2 2xb,0,, = 0,
) a{% B 86% + 48, 0m + 48, On0s + WV + &7 (7 + ¥,
— 8u, 0, + 420, — 2Zx42 =0, o

SCIENTIFICREPORTS | 6:29566 | DOI: 10.1038/srep29566 2



www.nature.com/scientificreports/

where /4, 11, are chemical potentials. In order to solve the above equations, we take the similarity transformation

G = Ba(x, UK (X, 1)), &,y = B,V (X (%, 9)), (4)

to transform (3) to the ordinary differential equations (ODEs)

Ugx + by, U° + b, UV? + b3UV + b, U° = 0,
Vg + by UV + by, V2 + by U + by, V= 0, (5)

where by, i=1,2, j=1, 2, 3 are constants. Substituting (4) into (3) and letting U(X), V(X) to satisfy (5), we obtain
a set of partial differential equations (PDEs). Solving this set of PDEs, we have
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where erf (s) = %fos ¢ "'dr is called an error function, KummerM(%, %) w)(y — x) and

KummerU (%, %, “’(}'T_")Z) (y — x)are solutions of the the ordinary differential equation
W
Fyy(Y) — WYFy(Y) + p F(Y) =0, @)
where Y=y — x. Specially, when - ;” @ = 3, the KummerM function can be simplified as exponential function
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which is experimentally feasible due to the flexible and precise control of the scattering lengths achievable in
BECs with magnetically tuning the Feshbach resonances™*%,

Rational solution of the atomic-molecular BECs with three-body interaction. When the coupling
X =0, (4) and (5) gives the rational formal solution of (2)

2
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where c is arbitrary constant and F is given in (6).

In order to investigate the topological properties of the exact spatially localized stationary solution (8), we plot
their density distributions. In Fig. 1, it can be observed that the energy packets are striped distribution, and the
number of the energy stripes increases with the chemical potential 11, when ¢ is fixed. It can also be seen that some
zero points appear on the middle density stripe along line y = x when the number of the density stripes is odd.

Jacobi elliptic function solution. When the three-body effect is very weak and the coupling x =0, we have
the following exact solutions of (5),
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Figure 1. The density distributions |1),|* of the atomic-molecular BEC with three-body interaction term as
the function of ¢ and p, with w=0.02, b;; =3, b,, =12, b}, = 1. The energy packets are striped distribution.
(a-c) show that the number of the energy stripes increases with chemical potential 1, when ¢ is fixed. (d-f)

illustrate that some zero points appear on the middle density stripe when the number of the density stripes is
odd.
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From Eqs (4), (6), (9) and (10), we obtain the Jacobi elliptic function solutions for the atomic-molecular BEC
(2)
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Here we discuss the existence regions of the spatially localized stationary solution (11) and (12) by assuming
the two constraint conditions 6, > 0 and #, > 0. We have the eight cases of parameters b,,, b, and b,,. According
to the real experiment, we consider the following two cases:

(1) by, <b;;<0and2b, > .[b;b,,.
(2) by>by,>0and—.[b,,b,, < ~2b, < by

These correspond to two cases of the intercomponent interaction parameters g,, g,, and g,

(a) gm>ga>0andfg < .88,
(b) g.<g.<0and g8, >«/Jg >g.

These are the regions that the exact spatially localized stationary solutions (11) and (12) exist. Now
we only consider case (b), which denotes two self-attractive atom-atom interactions, two self-attractive
molecular-molecular interactions, and attractive and repulsive atomic-molecular interactions. The other cases
can be analysed in the same way.

In the following, we will see that the integer # and the number of the zero points of function F which equals to
that of the KummerU and KummerM functions determine the topological properties of the atom and molecular
packets, so we call n and [ as the principal quantum number and the secondary quantum number, respectively.
In order to investigate the topological properties of the exact spatially localized stationary solution (11) and
(12), we plot their density distributions by manipulating the principal quantum number n when the secondary
quantum number / is fixed. In Fig. 2, we analyse the atomic BEC when the secondary quantum number / is fixed
and the principal quantum number # is modulated. It is easy to see that the number of density packets for each
quantum states is equal to 2n. And the number of density packets on each quantum states increases two by two
when the principal quantum number 7 increases. The properties of the molecular BEC are similar to that of the
atomic BEC. In Fig. 3, we analyse the interactions of the atomic BEC and the molecular BEC when the secondary
quantum number [ is fixed. It is shown that the interaction is stronger when N =1 and becomes weaker with the
increasing of N.

When the principal quantum number # is fixed, we can adjust the secondary quantum number / to observe
the properties of the atomic-molecular BEC. Figure 4 demonstrates the density distributions of atomic-molecular
BEC for different secondary quantum number /. It is easy to find that the number of energy packets increases
when ! increases, and the number of the nodes for each quantum state equals to the secondary quantum number
I. And some zero points appear on the middle density packets along the line y = x when the number of the sec-
ondary quantum number [ is even. Figure 5 demonstrates the interaction of the atomic BEC and molecular BEC
when the principal quantum number # is fixed. It is shown that the number of the atomic-molecular pair is the
function of the secondary quantum number / and some zero points appear on the middle atomic-molecular pair
along the line y = x when the number of the secondary quantum number  is even.

Now we analyse the effect of Raman detuning ¢ for the atomic-molecular BEC. From Fig. 6, we can see that
when € < p, and ¢ is fixed, the number of the density packets increases one by one with the increasing of the
chemical potential z,. When € > p,, there is only one density packets for each quantum states. The absolute of
€ — pu, affect the shape of the energy packets: when the absolute of € — 1, is small, the shape of the density packet
is like circle, and when the absolute of € — 1, is larger, the shape of the density packet becomes narrow and long.

Rational formal solution. When the three-body effect is very weak and the coupling x =0, (4) and (5) also
gives the rational formal solution of (2)

\Iju _ — 12‘\/5b13F - ewxye—iuat)
b123[2c eif( (x + y)) + 27b,,

v, = _jibBF 2 e M,
b123[26 - ﬁerf(%(x + y)) + 27b,

x = wﬁblSefw(szereryz).

8F (13)

where b3 =b,;3, b;; >0, c is arbitrary constant and F is given in (6).
In order to investigate the topological properties of the exact spatially localized stationary solution (13), we
plot their density distributions by adjusting the secondary quantum number I. The secondary quantum number [
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Figure 2. The density distributions |¢,|* of the atomic BEC as the function of the principal quantum
number n when the secondary quantum number is fixed. The wave function 1), take the form in Eqs (11) and
(12) with by, =3, by, =12, b, =1 and w=0.2. The number of density packets for each quantum states is equal to
2n. (a-c) show the density distributions of the odd parity wave functions (11) for n=1, 3, 5, respectively. (d-f)
illustrate the density distributions of the even parity wave functions (12) for n =2, 4, 6, respectively. The solution
displayed in figuer (a) is linear stable. The unit of the length is 1.07 pum.

is always zero for € < yu,, and can be taken different values for € > f1,,. In Fig. 7, it can be observed that the energy
packets are striped distribution, and the number of the energy stripes increases with the chemical potential i,
when the secondary quantum number /=0 and ¢ is fixed. When the secondary quantum number /= 0, there is
only one energy stripe and the energy stripe becomes more narrower with the increasing of the secondary quan-
tum number I It can also be seen that some zero points appear on the middle density stripe along line y=x when
the number of the density stripes is odd. Figures 1 and 7 show that the rational solution (8) and (13) have similar
topological properties, which implies that three-body interaction doesn’t hinder the formation of the localized
nonlinear matter wave solutions.

Linear stability analysis. In the following, we analyse the linear stability of the solutions (11), (12) and (13)
by using the linear stability analysis. A perturbed solution is constructed as*®*’

U, = [0, ) + uy(x, y)e™ + wi(x, y)e Me
U, = [fp(xy) + uy(x, y)e™

+ wy (x, y)e Mt (14)

where |u;| <1, [u,| < 1, || < 1, |w,| < 1 are small perturbation. Substituting this perturbed solution into (2) and
neglecting the higher-order terms in u,, u,, w; and w,, we obtain the eigenvalue problem
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Figure 3. The density distributions |1),|> + [1,,|* of the atomic-molecular pair as the function of N when the
secondary quantum number I=1. Here b;, =3, b,, =12, b;, =1, and w=0.2. (a) shows the interaction of the
atomic-molecular pair for N=1. (b) shows the interaction of the middle atomic-molecular pair for N=2, and

it also displays that the interactions are weaker than the interaction in (a). (a-f) illustrate that the interaction
becomes weaker with the increasing of N. The unit of the length is 1.07 pum.

L, 2XOp = 8,00 VZXOu = 8unPabm  —8umPa®m
8,84 — 2xb,, -, Eoum®PaBrm Eum®BaBm — (2X0,,
VZXGy = 8nBabm & Pa®m L, ~£,,Pm
CumPa®um Eum®atm — N2X0, 8 ~L,
Uy Uy
X 2121 = A 2/21 s
w, w, (15)

where

1 1
L= 5(31 + 00 — 28,07 — 8, m — sz o+ )+,

1 1
L,= Z(ai + (9?,) — 2gm¢,f, - gamqﬁuz — Za.zz(x2 +y%) + 2u, — €.

Numerical experiments show that the eigenvalue ) of the eigenvalue problem (15) is real for #n = 1. This sug-
gests that the localized nonlinear matter wave solution (11) is linearly stable for n =1 and solution (12) is unsta-
ble. For the solution (13), it can be shown that the linear stability rests on the chemical potential y, and the
Raman detuning € (see Fig. 8).

Discussion

In this paper, we focus on the analytic solutions of atomic-molecular BECs and the effects of the coupling x and
the Raman detuning ¢ on the atomic-molecular BECs. The system in this report is like the one in the ref. 43.
Comparing to the atomic-molecular system given in the ref. 43, Gupta and Dastidar have proposed a more com-
plicated model when they study the dynamics of atomic and molecular BECs of ’Rb in a spherically symmetric
trap coupled by stimulated Raman photoassociation process in the ref. 42. In fact, the light shift effect in Gupta
and Dastidar’s model almost has the same function as the Raman detuning term. So, it can be contributed to
the Raman detuning term. Based on this reason, we don’t consider the light shift effect and take the form of the
atomic-molecular BECs system as the form in ref. 43.

In the ref. 43, they show that the coherent coupling between atoms and molecules changes the situation cru-
cially and it is sensitive to the presence of vortices. For example, when the coupling  is zero, each of the atoms
and molecular BECs wave function forms an independent triangular vortex lattice, and a nonzero coupling x
proposes more dramatic changes. Our results show that the coupling x can change the topological structure of
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Figure 4. The density distributions |1),|* of the atomic-molecular BEC as the function of the secondary
quantum number I. Here w=0.2, b, =3, b,, =12, b;, = 1. The number of the nodes for each quantum state
equals to the secondary quantum number / and some zero points appear on the middle one when the number of
the density packets is odd. (al-a4) show the density distributions of the odd parity wave functions (11) for n=1
and =1, 2, 3, 4, respectively. (b1-b4) show the density distributions of the even parity wave functions (12) for
n=2and =1, 2, 3, 4, respectively. The solutions displayed in the first and third figures on the upper row are
linear stable. The unit of the length is 1.07 pm.

‘2

" +lw,

Va

Figure 5. The density distributions |1,|> + [1,,|? of the atomic-molecular pair as the function of the
secondary quantum number I with w=0.2, b,;; =3, b,, =12, b;, = 1. The number of the atomic-molecular
pairs equals to [+ 1. (a-c) show the density profiles of the atomic-molecular pair for / is odd. (d-f) show the
density profiles of the atomic-molecular pair for / is even, and it also displays that some zero points appear on
the middle one. The unit of the length is 1.07 pm.

the localized nonlinear wave of the atomic- molecular BECs. In the case of x =0, Figs 1-4 illustrate that the top-
ological structures depend on the principal quantum number # and the secondary quantum number , and each
density packet is like a circle and oval. When x =0, Fig. 6 display the density packets are striped distribution and
their topological structures only reply on the secondary quantum number [ and are independent on the principal
quantum #.

In real experiment, spatial modulation of the interatomic interaction can be achieved. In the recent exper-
iment?, the authors apply a pulsed optical standing wave to a BEC of ytterbium (*’*Yb) atoms and realize the
submicron control of the scattering length. The experimental phenomena is well explained by the semi-classical
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Figure 6. The effect of Raman detuning € for the atomic-molecular BEC. (a—c) show that the number of the
density packets increases with the chemical potential 1, when € < f,. (a,d) reveal that the number of the density
packets don’'t depends on the chemical potential /1, and there is only one density packet for each quantum state
when € > yu,, it also show the value of € — i, effects the shape of the density packet. The solution displayed in
figure (b) is linear stable. The unit of the length is 1.07 pum.

- 04 6
(al)/=0,£=0.01, £=0.1

6' /I

76
(a3)l—05 001, £=0.5

” IX109
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(bl)l—Og 0.2, 1£=0.2 (b2)l:0,g:X0.l,,u:0.4 (b3)l 08 Olu 05
/JXO

- 0 x 6 6 0 6 -

(cl)l=1,6=02, u=0.15 (€2)1=2,£=02, u=0.1 (e3)1= 35 02, u= .05

Figure 7. The density distributions |1/,|* of the atomic-molecular BEC as the function of € and p, with
w=0.02, b;, =3, b,, =12, b;, = 1. The energy packets are striped distribution. (al-b3) show that the number
of the energy stripes increases with chemical potential jz, when the secondary quantum number /=0. (c1-c3)
show that there is only one density stripe when the secondary quantum number /== 0. (b1,c3) illustrate that
some zero points appear on the middle density stripe when the number of the density stripes is odd. The
solutions displayed in figures (al,b1) are linear stable.

theory of Bohn and Julienne. In this paper, the interaction g, g,,,» £.,» and the coherent coupling  all depend on
the spatial variables. Under that conditions, the stable exact solutions can be worked out for the first time. The
spatial modulation of the interaction can be realized by the above experiment, but there is no successful exper-
iment for the spatial modulation of the coherent coupling. We hope that our research will stimulate the further
research on the spatial modulation of the atomic- molecular BECs.
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Figure 8. Linear stability. Eigenvalue for different principal quantum numbers # with parameters b,, =3,

by, =12, b,=1. (al-a3) show that the exact solution (11) is linearly stable only for n=1; (b1-b3) show that the
exact solution (12) is linearly unstable for all n; (c1-c3) illustrate that the solution (13) are linearly stable in the
two group parameters € =0.01, y1,, =0.1 and € =0.1, 11,,=0.2.

It is obvious that the Raman detuning term in the atomic- molecular BECs behaves just like the chemical
potential to control the system’s energy. In this paper, the results imply that i, — € not only changes the altitude
of the wave packets, but also changes the topological structures of the nonlinear waves. When , — ¢ > 0, the
number of the energy packets changes with the chemical potential ji,. When (1, — € <0, there is only one energy
packet for each quantum state.

In summary, we have worked out three kinds of localized nonlinear matter wave solutions of the
two-dimensional atomic-molecular BECs with space-modulated nonlinearity and considered the effect of
three-body interaction on the localized nonlinear matter wave solutions. Our results show that the matter wave
functions given by elliptic function have even parity for the even principal quantum number and odd parity for
the odd one, the number of density packets for each quantum state is twice of the principal quantum number n,
and the number of density packets increases two by two with the principal quantum number n. The number of
the nodes equals to the secondary quantum number I. For the nonlinear matter wave given by rational function,
the number of the energy stripes increases with the chemical potential jz, when the secondary quantum number
I=04and ¢ is fixed. When the secondary quantum number /== 0, there is only one energy stripe for each quantum
state and the energy stripe becomes more narrower with the increasing of the secondary quantum number /.
0Odd (even) secondary quantum number [ leads to even (odd) number of the energy packets (stripes). Some zero
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points appear on the middle energy packets (stripes) along line y=x for even secondary quantum number /. We
also analyse the effect of Raman detuning ¢ for the atomic-molecular BECs. The value of € — y, can change the
number and shape of the energy packets (stripes). The stability of our solutions is analysed: the nonlinear matter
wave solution (11) is linearly stable for the principal quantum number n =1, the solution (12) is unstable, and the
stability of the solution (13) rests on the chemical potential 11, and the Raman detuning €. Our results are signifi-
cant to matter wave management in high-dimensional atomic-molecular BECs.

Methods
We use the coupled Gross-Pitaevskii equation to describe the atomic-molecular BECs. Taking into account the
term responsible for the creation of molecules*®, the Hamiltonian is taken as

2 2
i = [ar ’@{Zh_mv ; g{ﬁ?ﬁ R %@@@

2

First, the coupled Gross-Pitaevskii equation is decomposed into two ODEs and a number of PDEs making use
of the similarity transformation. Then we solve these ODEs and PDEs by using some solving techniques and some
special functions, such as error function, KummerU function and Jacobi elliptic function. The final interaction

_ _ 1 . . . _
parametersarealteredtog =2¢ ,g = 38, and the chemical potential satisfies 1, = 21,.

L T T, + (TR, ¢ mﬁﬂ]‘
2 (16)
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