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Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum
transport beyond what is obtainable from the average current or conductance measurement alone. In
particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the
nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full
counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in
two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with
high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect
manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant
impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which
depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The
results indicated that the influence of the non-Markovian effect on the full counting statistics of electron
transport, which should be considered in a high quantum-coherent quantum dot molecule system, can
provide a better understanding of electron transport through quantum dot molecules.

F
ull counting statistics1 (FCS) of electron transport through mesoscopic system has attracted considerable
attention both experimentally and theoretically because it can provide a deeper insight into the nature of
electron transport mechanisms, which cannot be obtained from the average current2–10. For instance, the

shot noise measurements can be used to probe the dynamical in an open double quantum dots (QDs)11, the
coherent coupling between serially coupled QDs12, the evolution of the Kondo effect in a QD13, and the conduc-
tion channels of quantum conductors14. In particular, shot noise characteristics can provide information about
the feature of the pseudospin Kondo effect in a laterally coupled double QDs15, the spin accumulations in a
electron reservoir16, and the charge fractionalization in the n 5 2 quantum Hall edge17. In addition, the degree of
entanglement of two electrons in the double QDs18, the dephasing rate in a closed QD19, the internal level
structure of single molecule magnet20,21 can be characterized by the super-Poissonian shot noise.

On the other hand, the quantum coherence in coupled QD system, which is characterized by the off-diagonal
elements of the reduced density matrix of the QD system within the framework of the density matrix theory22,
plays an important role in the electron tunneling processes and has a significant influence on electron trans-
port23–33. In particular, theoretical studies have demonstrated that the high-order cumulants, e.g., the shot noise,
the skewness, are more sensitive to the quantum coherence than the average current in the different types of QD
systems12,34–38 and the quantum coherence information in a side-coupled double QD system can be extracted
from the high-order current cumulants35. In fact, the non-Markovian dynamics of the QD system also plays an
important role in the non-equilibrium electron tunneling processes. However, the above studies on current noise
or FCS were mainly based on the different types of Markovian master equations. Although the influence of non-
Markovian effect on the long-time limit of the FCS in the QD systems has received some attention33,39–46, how the
non-Markovian effect affects the FCS is still an open issue, especially the influence of the interplay between the
quantum coherence and non-Markovian effect on the long-time limit of the FCS has not yet been revealed.

The aim of this report is thus to derive a non-Markovian FCS formalism based on the exact time-convolution-
less (TCL) master equation and study the influences of the quantum coherence and non-Markovian effect on the
FCS in QD molecule systems. It is demonstrated that the non-Markovian effect manifests itself through the
quantum coherence of the considered QD molecule system, and has a significant impact on the FCS in the
high quantum-coherent QD molecule system, which depends on the coupling of the considered QD molecule
system with the incident and outgoing electrodes. Consequently, it is necessary to consider the influence of the
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non-Markovian effect on the full counting statistics of electron trans-
port in a high quantum-coherent single-molecule system.

Results
We now study the influences of the quantum coherence and non-
Markovian effect on the FCS of electronic transport through the QD
molecule system. In order to facilitate discussions effectively, we
consider three typical QD systems, namely, single QD without
quantum coherence, serially coupled double QDs and side-coupled
double QDs with high quantum coherence in a certain parameter
regime (see Fig. 1). In addition, we assume the bias voltage (mL 5

2mR 5 Vb/2) is symmetrically entirely dropped at the QD-electrode
tunnel junctions, which implies that the levels of the QDs are inde-
pendent of the applied bias voltage even if the couplings are not
symmetric, and choose meV as the unit of energy which corresponds
to a typical experimental situation47.

Single quantum dot without quantum coherence. In this subsection,
we consider a single QD weakly coupled to two ferromagnetic
electrodes. The Hamiltonian of the considered system is described by
the Htotal 5 Hdot 1 Hleads 1 HT. The QD Hamiltonian Hdot is given by

Hdot,1~
X

s

esd{
sdszU d{

:d:d{
;d;, ð1Þ

where d{
s dsð Þ creates (annihilates) an electron with spin s and on-

site energy es (which can be tuned by a gate voltage Vg) in this QD
system. U is the intradot Coulomb interaction between two electrons
in the QD system.

The relaxation in the two ferromagnetic electrodes is assumed to
be sufficiently fast, so that their electron distributions can be
described by equilibrium Fermi functions. The two electrodes are
thus modeled as non-interacting Fermi gases and the corresponding
Hamiltonians can be expressed as

HLeads,1~
X
aks

eaka{aksaaks, ð2Þ

where a{aks aaksð Þ creates (annihilates) an electron with energy eak,
spin s and momentum k in a (a 5 L, R) electrode, and s 5 1 (2)

denotes the majority (minority) spin states with the density of states
ga,s. The polarization vectors pL (left lead) and pR (right lead) are
parallel to each other, and their magnitudes are characterized by pa 5

jpaj 5 (ga,1 2 ga,2)/(ga,1 1 ga,2). The tunneling between the QD
and the electrodes is described by

HT,1~tLkza{Lkzd:ztRkza{Rkzd:

ztLk{a{Lk{d;ztRk{a{Rk{d;zH:c:,
ð3Þ

where spin-up " and spin-down # are defined to be the majority spin
and minority spin of the ferromagnet, respectively.

The QD-electrode coupling is assumed to be sufficiently weak,
thus, the sequential tunneling is dominant and can be well described
by the quantum master equation of reduced density matrix spanned
by the eigenstates of the QD. The particle-number-resolved TCL
quantum master equation for the reduced density matrix of the
considered single QD is given by

_r nð Þ tð Þ dot,1j

~{iLr nð Þ{
X
as

A zð Þ
as d{

szdsA {ð Þ
as r nð Þ{A {ð Þ

Ls r nð Þd{
s

h

{A {ð Þ
Rs r n{1ð Þd{

s{d{
sr nð ÞA zð Þ

Ls {d{
sr nz1ð ÞA zð Þ

Rs zH:c:
i
,

ð4Þ

For more details, see Methods section. Here, the complete basis {j0,
0æ, j", 0æ, j#, 0æ, j", #æ} is chosen to describe the electronic states of this
single QD system, and the single QD system parameters are chosen
as :~ ;~1, U 5 5, p 5 0.9 and kBT 5 0.04.

Figure 2 shows the first four current cumulants as a function of the
bias voltage for different ratios CL/CR describing the left-right asym-
metry of the QD-electrode coupling. We found that the non-
Markovian effect has no influence on the current noise behaviors
of the single QD considered here, see Fig. 2. Scrutinizing Eq. (4), it is
found that for the non-Markovian case the elements of the reduced
density matrix are equivalent to that for the Markovian case because
there are not the off-diagonal elements of the reduced density matrix.
Thus, the equations of motion of the four elements of the reduced
density matrix can be expressed as

Figure 1 | Schematic of the two single-level QD molecules weakly coupled to two electrodes, (a) serially coupled double QDs, (b) side-coupled double
QDs. Here, the two QD molecules possess high quantum coherence in the case of D=kBT (D being the singly-occupied eigenenergy separation, kB the
Boltzmann constant, T the temperature of the QDs system). The hopping coupling between the two QDs, and the strength of coupling between the
QDs system and the electrode a, are characterized by J and Ca , respectively.
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0,0 _rS tð Þj j0,0h i

~{ CL:fL,z :
� �

zCR:fR,z :
� �� �

0,0 rS tð Þj j0,0h i

{ CL;fL,z ;
� �

zCR;fR,z ;
� �� �

0,0 rS tð Þj j0,0h i

z CL:fL,{ :
� �

zCR:fR,{ :
� �

eix
� �

0,: rS tð Þj j:,0h i

z CL;fL,{ ;
� �

zCR;fR,{ ;
� �

eix
� �

;,0 rS tð Þj j0,;h i,

ð5Þ

0,: _rS tð Þj j:,0h i

~ CL:fL,z :
� �

zCR:fR,z :
� �

e{ix
� �

0,0 rS tð Þj j0,0h i

{ CL:fL,{ :
� �

zCR:fR,{ :
� �� �

0,: rS tð Þj j:,0h i

{ CL;fL,z :;{ :
� �

zCR;fR,z :;{ :
� �� �

0,: rS tð Þj j:,0h i

z CL;fL,{ :;{ :
� �

zCR;fR,{ :;{ :
� �

eix
� �

;,: rS tð Þj j:,;h i,

ð6Þ

;,0 _rS tð Þj j0,;h i

~ CL;fL,z ;
� �

zCR;fR,z ;
� �

e{ix
� �

0,0 rS tð Þj j0,0h i

{ CL;fL,{ ;
� �

zCR;fR,{ ;
� �� �

;,0 rS tð Þj j0,;h i

{ CL:fL,z :;{ ;
� �

zCR:fR,z :;{ ;
� �� �

;,0 rS tð Þj j0,;h i

z CL:fL,{ :;{ ;
� �

zCR:fR,{ :;{ ;
� �

eix
� �

;,: rS tð Þj j:,;h i,

ð7Þ

;,: _rS tð Þj j:,;h i

~ CL;fL,z :;{ :
� �

zCR;fR,z :;{ :
� �

e{ix
� �

0,: rS tð Þj j:,0h i

z CL:fL,{ :;{ ;
� �

zCR:fR,z :;{ ;
� �

e{ix
� �

;,0 rS tð Þj j0,;h i

{ CL:fL,{ :;{ ;
� �

zCR:fR,{ :;{ ;
� �� �

;,: rS tð Þj j:,;h i

{ CL;fL,{ :;{ :
� �

zCR;fR,{ :;{ :
� �� �

;,: rS tð Þj j:,;h i:

ð8Þ

Here, fa,1 is the Fermi function of the electrode a, and fa,2 5 12fa,1.
The detailed procedure for calculation of the equation of motion of a
reduced density matrix, see Methods section. Within the framework
of the density matrix theory, the off-diagonal elements of the reduced
density matrix characterize the quantum coherence of the considered
QD system. Thus, the influence of the non-Markovian effect on the
FCS may be associated with the quantum coherence of the consid-
ered QD system. In order to confirm this conclusion, we take serially
coupled and side-coupled double QDs for illustration in the follow-
ing two subsection.

Serially coupled double quantum dots with high quantum coherence.
We now consider two serially coupled double QDs weakly connected
to two metallic electrodes, see Fig. 1(a). For the sake of simplicity, the
spin degree of freedom has not been considered. The double-QD is
described by a spinless Hamiltonian

Hdot,2~ 1d{
1 d1z 2d{

2 d2zUn̂1n̂2{J d{
1 d2zd{

2 d1

� �
, ð9Þ

where d{
i dið Þ creates (annihilates) an electron with energy ei (which

can be tuned by a gate voltage Vg) in ith QD. U is the interdot
Coulomb repulsion between two electrons in the double QD
system, where we consider the intradot Coulomb interaction U R
‘, so that the double-electron occupation in the same QD is
prohibited. The last term of Hdot describes the hopping coupling
between the two dots with J being the hopping parameter. The
two metallic electrodes are modeled as non-interacting Fermi gases
and the corresponding Hamiltonians are given by

HLeads,2~
X

ak

eaka{akaak, ð10Þ

where a{ak aakð Þ creates (annihilates) an electron with energy eak and
momentum k in a (a 5 L, R) electrode. The tunneling between the
double QDs and the two electrodes is described by

/Γ

 Γ Γ

 Γ Γ

 Γ Γ

 Γ Γ

 Γ Γ

 Γ Γ

Figure 2 | The average current (ÆIæ), shot noise (C2/C1), skewness (C3/C1) and kurtosis (C4/C1) versus bias voltage for the Morkovian and the non-
Markovian case at different coupling of the single QD with two ferromagnetic electrodes, respectively. Here, Ck is the zero-frequency k-order cumulant

of current fluctuations. The non-Markovian effect has no influence on the first four current cumulants of the considered single QD. The single QD system

parameters: :~ ;~1, U 5 5, p 5 0.9 and kBT 5 0.04.
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HT,2~
X
ak

tLa{Lkd1ztRa{Rkd2zH:c:
� �

: ð11Þ

For the case of the weak QD-electrode coupling, the particle-
number-resolved TCL quantum master equation for the reduced
density matrix of the considered serially double-QD system reads

_r nð Þ tð Þ dot,2j

~{iLr nð Þ tð Þ{ d{
1 A {ð Þ

L r nð Þ tð Þzr nð Þ tð ÞA zð Þ
L d{

1

h

d{
2 A {ð Þ

R r nð Þ tð Þzr nð Þ tð ÞA zð Þ
R d{

2{A {ð Þ
L r nð Þ tð Þd{

1

{d{
1r nð Þ tð ÞA zð Þ

L {A {ð Þ
R r n{1ð Þ tð Þd{

2

{d{
2r nz1ð Þ tð ÞA zð Þ

R zH:c:
i
,

ð12Þ

Here, we can diagonalize the serially coupled double QDs
Hamiltonian Hdot,2 in the basis represented by the electron
occupation numbers in the QD-1 and QD-2 denoted respectively
by NL and NR, namely, {j0, 0æ, j1, 0æ, j0, 1æ, j1, 1æ}, and obtain the
corresponding four eigenstates of the considered serially coupled
double QDs system48

Hdot,2 0j i~0, 0j i~ 0,0j i,

Hdot,2 1j i+~ + 1j i+, 1j i+~a+ 1,0j izb+ 0,1j i,

Hdot,2 2j i~ 1,1 2j i~ 1z 2zUð Þ 2j i, 2j i~ 1,1j i,

ð13Þ

with

+~
1z 2ð Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ 2ð Þ2z4J2

q
2

, ð14Þ
and

a+~
+Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

+{ 1ð Þ2zJ2
q ,

b+~
+ +{ 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+{ 1ð Þ2zJ2

q :

ð15Þ

Here, we focus on the regime z{ {ð Þ=kBT , where the hopping
coupling between the two QDs strongly modifies the internal
dynamics, and the off-diagonal elements of the reduced density
matrix play an essential role in the electron tunneling processes23,49–51.
In the following numerical calculations, thus, the parameters of the
serially coupled double QDs system are chosen as 1~ 2~1, J 5

0.001, U 5 4 and kBT 5 0.05.
When the coupling of the QD-2 with the right (drain) electrode is

stronger than that of the QD-1 with the left (source) electrode,
namely, CL/CR , 1, we plot the first four current cumulants as a
function of the bias voltage for different values of the QD-2-electrode
coupling CR at CL/CR 5 0.1 in Figs. 3(a)–3(d). We found that the
non-Markovian effect has a very weak influence on the FCS.
Interestingly, the high-order current cumulants the skewness and
the kurtosis can still show the tiny differences, see Figs. 3(c) and
3(d). Whereas for the CL/CR $ 1 case, the non-Markovian effect
has a significant impact on the FCS, see Fig. 4. Especially, for a
relatively large value of the ratio CL/CR 5 10 and the coupling of
the QD-1 with the left electrode being stronger than the hoping

/Γ

10Γ Γ

 10Γ Γ

10Γ Γ

 10Γ Γ

 10Γ Γ

 10Γ Γ

/Γ

Γ Γ

,Γ Γ

,Γ Γ

Γ 10Γ

Γ 10Γ

Γ 10Γ

Γ 10Γ

Γ 10Γ

Γ 10Γ

Figure 3 | (a)–(d) The average current (ÆIæ), shot noise (C2/C1), skewness (C3/C1) and kurtosis (C4/C1) versus bias voltage for the Morkovian and the

non-Markovian case at different values of the QD-2-electrode coupling CR with CL/CR 5 0.1. Here, Ck is the zero-frequency k-order cumulant of

current fluctuations. The non-Markovian effect in the CL/CR 5 0.1 case has a weak influence on the the first four current cumulants. The serially coupled

double QDs system parameters: 1~ 2~1, J 5 0.001, U 5 4 and kBT 5 0.05. (e)–(h) The average current (ÆIæ), shot noise (C2/C1), skewness (C3/C1) and

kurtosis (C4/C1) versus bias voltage for different coupling of the serially coupled double QDs system with two metallic electrodes. Here three cases are

considered, namely, (1) the Markovian and the diagonal elements of the reduced density matrix, (2) the Markovian and the off-diagonal elements of the

reduced density matrix, (3) the non-Markovian and the off-diagonal elements of the reduced density matrix. The non-Markovian effect has a very weak

influence on the first four current cumulants in the serially coupled double QD system with a relatively small quantum coherence. The serially coupled

double QDs system parameters: 1~ 2~1, J 5 1, U 5 4 and kBT 5 0.05.
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coupling, namely, CL/J . 1, the non-Markovian effect can induce a
strong negative differential conductance (NDC) and super-
Poissonian noise, see Figs. 4(e) and 4(f). In addition, in the case of
CL/CR $ 1 and CL/J . 1, the transitions of the skewness and the
kurtosis from positive (negative) to negative (positive) values are
observed, see the dotted line in Fig. 4(c), the dotted and dash-dot-
dotted lines in Fig. 4(d), and the dash-dot-dotted line in Fig. 4(h). It is
well known that the skewness and the kurtosis (both its magnitude
and sign) characterize, respectively, the asymmetry of and the peak-
edness of the distribution around the average transferred-electron
number �n during a time interval t, thus that provides further
information for the counting statistics beyond the shot noise.

To discuss the underlying mechanisms of the current noise clearly,
for the system parameters considered here, the two singly-occupied
eigenstates and eigenvalues can be expressed as

1j i+~+

ffiffiffi
2
p

2
1,0j iz

ffiffiffi
2
p

2
0,1j i,

z~ {~

8<
: ð16Þ

Here we have utilized the equations 1~ 2~ and ?J . In this situ-
ation, the equations of motion of the six elements of the reduced
density matrix are given by

0,0 _rS tð Þj j0,0h i

~{ CLfL,zð ÞzCRfR,zð Þ½ � 0,0 rS tð Þj j0,0h i

z
1
2

CLfL,{ð Þ{CRfR,{ð Þeix
� �

1 zrS tð Þj j1h iz

{
1
2

CLfL,{ð Þ{CRfR,{ð Þeix
� �

1 zrS tð Þj j1h i{

{
1
2

CLfL,{ð Þ{CRfR,{ð Þeix
� �

1 {rS tð Þj j1h iz

z
1
2

CLfL,{ð ÞzCRfR,{ð Þeix
� �

1 {rS tð Þj j1h i{,

ð17Þ

1 + _r
nð Þ

S tð Þ
			 			1D E+

~
1
2

CLfL,zð ÞzCRfR,zð Þe{ix
� �

0,0 rS tð Þj j0,0h i

{
1
2

X
a~L,R

Ca fa,z zUð Þzfa,{ð Þ½ � 1 +rS tð Þ
		 		1
 �+

+
1
2
CL

2p
iWL+pFLð Þ 1h jzrS tð Þ 1j i{+

1
2
CR

2p
iWR+pFRð Þ 1h jzrS tð Þ 1j i{

+
1
2
Ca

2p
iWL+pFLð Þ 1h j{rS tð Þ 1j iz+ 1

2
CR

2p
iWR+pFRð Þ 1h j{rS tð Þ 1j iz

z
1
2

CLfL,{ zUð ÞzCRfR,{ zUð Þeix
� �

1,1h jrS tð Þ 1,1j i,

ð18Þ

1 + _rS tð Þ
		 		1
 �+

~{
1
2

CLfL,zð Þ{CRfR,zð Þe{ix
� �

0,0 rS tð Þj j0,0h i

+
1
2
CL

2p
iWL+pFLð Þ 1h jzr

nð Þ
S tð Þ 1j iz+

1
2
CR

2p
iWR+pFRð Þ

1h jzrS tð Þ 1j iz{
1
2

X
a~L,R

Ca fa,z zUð Þzfa,{ð Þ½ �

1 +rS tð Þ
		 		1
 �+

+2iJ 1h j+rS tð Þ 1j i++
1
2
CL

2p
iWL+pFLð Þ

1h j{r
nð Þ

S tð Þ 1j i{+
1
2
CR

2p
iWR+pFRð Þ 1h j{rS tð Þ 1j i{

z
1
2

CLfL,{ zUð Þ{CRfR,{ zUð Þeix
� �

1,1h jrS tð Þ 1,1j i,

ð19Þ
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 Γ Γ
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Figure 4 | The average current (ÆIæ), shot noise (C2/C1), skewness (C3/C1) and kurtosis (C4/C1) versus bias voltage for the Morkovian and the non-
Markovian case at different values of the QD-2-electrode coupling CR. (a)–(d) for CL/CR 5 1, (e)–(h) for CL/CR 5 10. Here, Ck is the zero-frequency k-

order cumulant of current fluctuations. The non-Markovian effect in the CL/CR $ 1 case has a significant impact on the first four cumulants of transport

current. The serially coupled double QDs system parameters: 1~ 2~1, J 5 0.001, U 5 4 and kBT 5 0.05.
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1,1 _rS tð Þj j1,1h i
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2

CLfL,z zUð ÞzCRfR,z zUð Þe{ix
� �

1 zrS tð Þj j1h iz
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1
2

CLfL,z zUð Þ{CRfR,z zUð Þe{ix
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1 zrS tð Þj j1h i{

z
1
2

CLfL,z zUð Þ{CRfR,z zUð Þe{ix
� �

1 {rS tð Þj j1h iz

z
1
2

CLfL,z zUð ÞzCRfR,z zUð Þe{ix
� �

1 {rS tð Þj j1h i{

{ CLfL,{ zUð ÞzCRfR,{ zUð Þ½ � 1,1 rS tð Þj j1,1h i,

ð20Þ

where Wa~wa zUð Þ{wað Þ, wað Þ~ReY
1
2
z

i {mLð Þ
2pkBT

� 

(Y is the

digamma function) and Fa~fa,z zUð Þ{fa,{ð Þ. Compared with
the Markovian case, it is obvious that the non-Markovian effect
manifests itself through the off-diagonal elements of the reduced
density matrix, namely, the quantum coherence of the considered
QDs system. In Fig. 5(a), we plot the functions WL 2 0.1WR (CR 5

0.1CL), WL 2 WR (CR 5 CL) and 0.1WL 2 WR (CL 5 0.1CR) as a
function of bias voltage. It is clearly evident that the values of the
functions WL 2 0.1WR and WL 2 WR show significant variations with
increasing bias voltage, especially in the vicinity of the bias voltages
Vb 5 2 and Vb 5 10 because the new transport channels begin to
participate in quantum transport; while 0.1WL 2 WR has a gentle
variation. Consequently, the non-Markovian effects in the CL/CR

$ 1 case have a remarkable impact on the FCS, see Fig. 4.
Moreover, forCL/CR 5 10 case, the non-Markovian effect has a more
significant on the FCS than the CL/CR 5 1 case, which originates
from the QD-2-electrode coupling CR is weaker than the hoping
coupling J, where the electron tunneling from QD-1 can not tunnel
out QD-2 very quickly and still influence the internal dynamics.

In order to illustrate whether the non-Markovian effect has a weak
influence on the FCS in a relatively small quantum-coherent QD
system, we consider the regime z{ {ð Þ?kBT (J 5 1), where the

off-diagonal elements of the reduced density matrix have little influ-
ence on the electron tunneling processes. We find that for the J 5 1
case the diagonal elements of the reduced density matrix play a major
role in the electron tunneling processes, and the non-Markovian
effect in this case indeed has little impact on the FCS, see
Figs. 3(e)–3(h). Consequently, the influence of the non-Markovian
effect on the FCS depends on the quantum coherence of the consid-
ered QD system. To prove whether this conclusion is universal or
not, we take side-coupled double QDs for further illustration in the
following subsection.

Side-coupled double quantum dots with high quantum coherence.
We consider here a side-coupled double QDs system. In this case, the
QD-1 is only weakly coupled to the two electrodes, see Fig. 1(b). The
QD-electrode tunneling is thus described by

HT,3~
X
ak

taka{akd1zt�akd{
1 aak

� �
: ð21Þ

In the case of the QD-electrode weak coupling, the particle-num-
ber-resolved TCL quantum master equation for the side-coupled
double QDs can be expressed as

_r nð Þ tð Þ dot,3j

~{iLr nð Þ tð Þ{ d{
1 A {ð Þ

L,1 r nð Þ tð Þzd{
1 A {ð Þ

R,1 r nð Þ tð Þ
h

zr nð Þ tð ÞA zð Þ
L,1 d{

1zr nð Þ tð ÞA zð Þ
R,1 d{

1{A {ð Þ
L,1 r nð Þ tð Þd{

1

{A {ð Þ
R,1 r n{1ð Þ tð Þd{

1{d{
1r nð Þ tð ÞA zð Þ

L,1

{d{
1r nz1ð Þ tð ÞA zð Þ

R,1 zH:c:
i
:

ð22Þ

Here, the eigenstates and eigenvalues of the side-coupled double QDs
system are the same as the serially coupled double QDs system. In the
following numerical calculations, the parameters of the side-coupled
QDs system are chosen as 1~ 2~1, J 5 0.001, U 5 5 and kBT 5 0.1.

φ

φ (ε+ )+0.1φ (ε+ )−φ (ε)−0.1φ (ε)

φ (ε+ )+φ (ε+ )−φ (ε)−φ (ε)

0.1φ (ε+ )+φ (ε+ )−0.1φ (ε)−φ (ε)

φ
α
(ε)= Ψ(1/2+ β(ε−μ

α
)/(2π)

φ

φ (ε+ )−0.1φ (ε+ )−φ (ε)+0.1φ (ε)

φ (ε+ )−φ (ε+ )−φ (ε)+φ (ε)

0.1φ (ε+ )−φ (ε+ )−0.1φ (ε)+φ (ε)

Figure 5 | (a) The functionsWL 2 0.1WR (CR 5 0.1CL),WL 2WR (CR 5CL) and 0.1WL 2WR (CL 5 0.1CR) as a function of bias voltage with U 5 4 and kBT

5 0.05. (b) The functionsWL 1 0.1WR (CR 5 0.1CL),WL 1WR (CR 5CL) and 0.1WL 1WR (CL 5 0.1WR) as a function of bias voltage with U 5 5 and kBT 5

0.1. Here, Wa~wa zUð Þ{wað Þ, wað Þ~ReY
1
2
z

i {mLð Þ
2pkBT

� 

and Y is the digamma function. The variation of the value of the above mentioned

function is responsible for whether the non-Markovian effect has a remarkable influence on the first four cumulants of transport current.
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For the present side-coupled QDs system with high quantum
coherence, we find that for CL/CR $ 1 case the non-Markovian effect
has a more remarkable impact on the FCS than that in the serially
coupled double QDs system, but the NDC does not appear, see Figs. 4
and 6. For instance, in the case of CL/J . 1 and CL/CR 5 1, the non-
Markovian effect can further enhance the super-Poissonian shot
noise, see the dotted and dash-dot-dotted lines in Fig. 6(b); and the
transitions of the skewness and the kurtosis from a relatively small
positive to a large negative values take place, especially for a relatively
large value CL/J the kurtosis can be further decreased to a very large
negative value, see the dotted and dash-dot-dotted lines in Figs. 6(c)
and 6(d). While for the CL/J . 1 and CL/CR 5 10 case the non-
Markovian effect can enhance the shot noise to a super-Poissonian
value, see the dotted and dash-dot-dotted lines in Fig. 6(f), and the
transition of the kurtosis from small positive to large negative values
only takes place, see the dotted and dash-dot-dotted lines in Fig. 6(h).
For the system parameters considered here, namely, in the limit of

1~ 2~ ?J , the equations of motion of the six elements of the
reduced density matrix read

0,0 _rS tð Þj j0,0h i

~{ CLfL,zð ÞzCRfR,zð Þ½ � 0,0 rS tð Þj j0,0h i

z
1
2

CLfL,{ð ÞzCRfR,{ð Þeix
� �

1 zrS tð Þj j1h iz

{
1
2

CLfL,{ð ÞzCRfR,{ð Þeix
� �

1 zrS tð Þj j1h i{

{
1
2

CLfL,{ð ÞzCRfR,{ð Þeix
� �

1 {rS tð Þj j1h iz

z
1
2

CLfL,{ð ÞzCRfR,{ð Þeix
� �

1 {rS tð Þj j1h i{,

ð23Þ

1 + _r tð Þ
		 		1
 �+

~
1
2

CLfL,zð ÞzCRfR,zð Þe{ix
� �

0,0h jrS tð Þ 0,0j i

{
1
2

X
a~L,R

Ca fa,z zUð Þzfa,{ð Þ½ � 1h j+rS tð Þ 1j i+

+
1
2

X
a~L,R

Ca

2p
iWa+pFað Þ 1h jzrS tð Þ 1j i{

+
1
2

X
a~L,R

Ca

2p
iWa+pFa½ � 1h j{rS tð Þ 1j iz

z
1
2

CLfL,{ zUð Þz 1
2
CRfR,{ zUð Þeix

� 

1,1h jrS tð Þ 1,1j i,

ð24Þ

1 + _r tð Þ
		 		1
 �+

~{
1
2

CLfL,zð ÞzCRfR,zð Þe{ix
� �

0,0h jrS tð Þ 0,0j i

+
1
2

X
a~L,R

Ca

2p
iWa+pFa½ � 1h jzrS tð Þ 1j iz

{
1
2

X
a~L,R

Ca fa,z zUð Þzfa,{ð Þ½ � 1h j+rS tð Þ 1j i+

+2iJ 1h j+rS tð Þ 1j i++
1
2

X
a~L,R

Ca

2p
iWa+pFa½ � 1h j{r

nð Þ
S tð Þ 1j i{

z
1
2

CLfL,{ zUð ÞzCRfR,{ zUð Þeix
� �

1,1h jrS tð Þ 1,1j i,

ð25Þ
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Figure 6 | The average current (ÆIæ), shot noise (C2/C1), skewness (C3/C1) and kurtosis (C4/C1) versus bias voltage for the Morkovian and the non-
Markovian case at different values of the QD-1-electrode coupling CR. (a)–(d) for CL/CR 5 1, (e)–(h) for CL/CR 5 10. Here, Ck is the zero-frequency

k-order cumulant of current fluctuations. The non-Markovian effect in the CL/CR $ 1 case has a more remarkable impact on the first four cumulants

of transport current than that in the serially coupled double QDs system, but the NDC does not appear. The side-coupled double QDs system

parameters: 1~ 2~1, J 5 0.001, U 5 5 and kBT 5 0.1.
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1,1h j _rS tð Þ 1,1j i

~
1
2

CLfL,z zUð ÞzCRfR,z zUð Þe{ix
� �

1h jzrS tð Þ 1j iz

z
1
2

CLfL,z zUð ÞzCRfR,z zUð Þe{ix
� �

1h jzrS tð Þ 1j i{

z
1
2

CLfL,z zUð ÞzCRfR,z zUð Þe{ix
� �

1h j{rS tð Þ 1j iz

z
1
2

CLfL,z zUð ÞzCRfR,z zUð Þe{ix
� �

1h j{rS tð Þ 1j i{

{ CLfL,{ zUð ÞzCRfR,{ zUð Þ½ � 1,1h jrS tð Þ 1,1j i:

ð26Þ

From the above four equations, we find that these characteristics also
originate from the quantum coherence of the side-coupled double
QDs, and can also be understood in terms of the functions WL 1

0.1WR and WL 1 WR, which have considerable variations in the vicin-
ity of the bias voltages Vb 5 2 and Vb 5 12 because the new transport
channels begin to enter the bias voltage window, see the solid and
dashed lines in Fig. 5(b). As for the CL/CR , 1 case the non-
Markovian effect has a slightly influence on the FCS because the
function 0.1WL 1 WR has a gentle variation with increasing the bias
voltage, see the dotted line in Fig. 5(b), which is the same as the
serially coupled double QDs system, see Figs. 3(a)–3(d) and 7.

In addition, it should be pointed out that for CL/CR 5 1 the non-
Markovian effect has a stronger impact on the FCS than that for CL/
CR . 1 case, which is contrary to the case of the serially coupled
double QDs system. For the the side-coupled double QDs system, the
quantum coherence originates from the quantum interference
between the direct electron tunneling process, namely, the conduc-
tion-electron tunneling into the QD-1 and then directly tunneling
out of the QD-1 onto the drain electrode, and the indirect tunneling
process, namely, the conduction-electron from the source electrode

first tunneling from the QD-1 to the QD-2, then tunneling back into
the QD-1, and at last tunneling out of the QD-1. Thus, the fast direct
tunneling process in theCL 5 10CR case can be suppressed compared
with the CL 5CR case, which leads to the non-Markovian effect has a
relatively strong impact on the FCS in the CL/CR 5 1 case.

Discussion
We have developed a non-Markovian FCS formalism based on the
exact TCL master equation, and studied the influence of the interplay
between the quantum coherence and non-Markovian effect on the
long-time limit of the FCS in three QD systems, namely, single QD,
serially coupled double QDs and side-coupled double QDs. It is
demonstrated that the non-Markovian effect manifests itself through
the quantum coherence of the considered QD molecule system, and
especially has a significant impact on the FCS in the high quantum-
coherent QD molecule system, which depends on the coupling of the
considered QD molecule system with the source and drain electro-
des. For the single QD system without quantum coherence, the non-
Markovian effect has no influence on the current noise properties;
whereas for the serially coupled and side-coupled double QDs sys-
tems with high quantum coherence, that has a remarkable impact on
the FCS when the coupling of the considered QD molecule with the
incident electrode is equal to or stronger than that with the outgoing
electrode. For instance, for the high quantum-coherent serially
coupled double QDs system, the non-Markovian effect can induce
a strong NDC and change the shot noise from the sub-Poissonian to
super-Poissonian distribution in the case of CL=CR?1 and CL . J;
while for the high quantum-coherent side-coupled double QDs sys-
tem, that can remarkably enhance the super-Poissonian noise or the
sub-Poissonian noise for the CL/CR $ 1 case. Moreover, the non-
Markovian effect can also lead to the occurrences of the skewness
and kurtosis from small positive to large negative values. These
results indicated that the influence of the non-Markovian effect on

/Γ

 Γ Γ

 Γ Γ

 Γ Γ

 Γ Γ

 Γ Γ

 Γ Γ

Figure 7 | The average current (ÆIæ), shot noise (C2/C1), skewness (C3/C1) and kurtosis (C4/C1) versus bias voltage for the Morkovian and the non-
Markovian case at different values of the QD-1-electrode coupling CR with CL/CR 5 0.1. Here, Ck is the zero-frequency k-order cumulant of current

fluctuations. The non-Markovian effect in the CL/CR 5 0.1 case has a slightly influence on the the first four current cumulants. The other system

parameters are the same as in Fig. 6.
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the long-time limit of the FCS should be considered in a highly
quantum-coherent single-molecule system.

Methods
Particle-number-resolved time-convolutionless quantum master equation. We
consider a general transport setup consisting of a single-level QD molecule weakly
coupled to the two electrodes, see Fig. 1, which is described by the following
Hamiltonian

H~HelectrodeszHdotzHhyb: ð27Þ

Here, the first term Helectrodes~
X

a,k,s
eaka{

aksaaks stands for the Hamiltonians of the

two electrodes, with eak being the energy dispersion, and aaks a{
aks

� �
the annihilation

(creation) operators in the a electrode. The second term Hdot~HS d{
m,dm

� �
, which

may contain vibrational or spin degrees of freedom and different types of many-body
interaction, represents the QD molecule Hamiltonian, where d{

m dm

� �
is the creation

(annihilation) operator of electrons in a quantum state denoted by m. The third term

Hhyb~
X

a,m,k
t�amka{

amkdmztamkd{
maamk

� �
describes the tunneling coupling between

the QD molecule and the two electrodes, which is assumed to be a sum of bilinear
terms that each create an electron in the QD molecule and annihilate one in the
electrodes or vice versa.

The QD-electrode coupling is assumed to be sufficiently weak, so that Hhyb can be
treated perturbatively. In the interaction representation, the equation of motion for
the total density matrix reads

L
Lt

rI tð Þ~{i HI
hyb tð Þ,rI tð Þ

h i
:L tð ÞrI tð Þ, ð28Þ

with

HI
hyb tð Þ~{

X
a,m

f {am tð Þdm tð Þzd{
m tð Þfam tð Þ

h i

where f {am tð Þ~
X

k
t�amkeiHelectrodes t a{amke{iHelectrodes t and dm tð Þ~eiHdot t dme{iHdot t . In order

to derive an exact equation of motion for the reduced density matrix rS of the QD
molecule system, it is convenient to define a super-operator P according to

Pr~trB r½ �6rB~rS6rB, ð29Þ

with rB being some fixed state of the electron electrode. Accordingly, a comple-
mentary super-operator Q reads

Qr~r{Pr: ð30Þ

For a factorizing initial condition r (t0) 5 rS (t0) fl rB, Pr t0ð Þ~r t0ð Þ, and
Qr t0ð Þ~0. Using the TCL projection operator method52, one can obtain the second-
order TCL master equation

L
Lt
Pr tð Þ

ðt

{?
dt1PL tð ÞL t1ð ÞPr tð Þ, ð31Þ

The Eq. (31) is the starting point of deriving the particle-number-resolved quantum
master equation. Using Eqs. (28) and (29), after some algebraic calculations we can
rewrite Eq. (31) as

L
Lt

rI,S tð Þ

~{
X
amn

ðt

{?
dt1trB rI,S tð Þ6rBf {an t1ð Þdn t1ð Þd{

m tð Þfam tð Þ
h i

{
X
amn

ðt

{?
dt1trB d{

m tð Þfam tð Þf {an t1ð Þdn t1ð ÞrI,S tð Þ6rB

h i

z
X
amn

ðt

{?
dt1trB f {an tð Þdm tð ÞrI,S tð Þ6rBd{

n t1ð Þfan t1ð Þ
� �

z
X
amn

ðt

{?
dt1trB d{

m tð Þfam tð ÞrI,S tð Þ6rBf {an t1ð Þdn t1ð Þ
h i

zH:c::

ð32Þ

In order to fully describe the electron transport problem, we should record the
number of electrons arriving at the drain electrode, which emitted from the source
electrode and passing through the QD molecule. We follow Li and co-authors53,54 and
introduce the Hilbert subspace B(n) (n 5 1, 2, …) corresponding to n electrons arriving
at the drain electrode, which is spanned by the product of all many-particle states of
the two isolated electrodes, and formally denoted as B(n) ; span{jYLæ(n)

fl jYRæ(n)}.
Then, the entire Hilbert space of the two electrodes can be expressed as B 5 ›nB(n).

With this classification of the electrode states, the average over states in the entire
Hilbert space B in Eq. (32) should be replaced with the states in the subspace B(n), and
leading to a conditional TCL master equation

L
Lt

r
nð Þ

I,S tð Þ

~{
X
amn

ðt

{?
dt1trB nð Þ rI,S tð Þ6rBf {an t1ð Þdn t1ð Þd{

m tð Þfam tð Þ
h i

{
X
amn

ðt

{?
dt1trB nð Þ d{

m tð Þfam tð Þf {an t1ð Þdn t1ð ÞrI,S tð Þ6rB

h i

z
X
amn

ðt

{?
dt1trB nð Þ f {an t1ð Þdn t1ð ÞrI,S tð Þ6rBd{

m tð Þfam tð Þ
h i

z
X
amn

ðt

{?
dt1trB nð Þ d{

m tð Þfam tð ÞrI,S tð Þ6rBf {an t1ð Þdn t1ð Þ
h i

zH:c::

ð33Þ

To proceed, two physical considerations are further implemented. (i) Instead of the
conventional Born approximation for the entire density matrix rT tð Þ^r tð Þ6rB , the

ansatz rI tð Þ^r nð Þ tð Þ6r
nð Þ

B is proposed, where r
nð Þ

B being the electrode density
operator associated with n electrons arriving at the drain electrode. With this ansatz
for the entire density operator, tracing over the subspace B(n), the Eq. (33) can be
rewritten as

L
Lt

r
nð Þ

I,S tð Þ

~{
X
amn

ðt

{?
dt1trB nð Þ f {an t1ð Þfam tð ÞrB

� �
r

nð Þ
I,S tð Þdn t1ð Þd{

m tð Þ

{
X
amn

ðt

{?
dt1trB nð Þ fam tð Þf {an t1ð ÞrB

� �
d{

m tð Þdn t1ð Þr nð Þ
I,S tð Þ

z
X

mn

ðt

{?
dt1trB nð Þ fLm

tð Þf {Ln t1ð ÞrB

h i
dn t1ð Þr nð Þ

I,S tð Þd{
m tð Þ

z
X

mn

ðt

{?
dt1trB nð Þ fRm

tð Þf {Rn t1ð ÞrB

h i
dn t1ð Þr n{1ð Þ

I,S tð Þd{
m tð Þ

z
X

mn

ðt

{?
dt1trB nð Þ f {Ln t1ð ÞfLm

tð ÞrB

h i
d{

m tð Þr nð Þ
I,S tð Þdn t1ð Þ

z
X

mn

ðt

{?
dt1trB nð Þ f {Rn t1ð ÞfRm

tð ÞrB

h i
d{

m tð Þr nz1ð Þ
I,S tð Þdn t1ð ÞzH:c::

ð34Þ

Here we have used the orthogonality between the states in different subspaces. (ii) The
extra electrons arriving at the drain electrode will flow back into the source electrode
via the external closed transport circuit. Moreover, the rapid relaxation processes in
the electrodes will bring the electrodes to the local thermal equilibrium states quickly,
which are determined by the chemical potentials. Consequently, after the procedure

done in Eq. (34), the electrode density matrices r
nð Þ

B and r
n+1ð Þ

B should be replaced by

r
0ð Þ

B . In the Schrödinger representation, the Eq. (34) can be expressed as

L
Lt

r
nð Þ

S tð Þ

~{i HS,r
nð Þ

S t
h i

{
X
amn

ðt

{?
dt1C zð Þ

anm t1{tð Þr nð Þ
S tð Þe{iHS t{t1ð ÞdneiHS t{t1ð Þd{

m

{
X
amn

ðt

{?
dt1C {ð Þ

anm t{t1ð Þd{
me{iHS t{t1ð ÞdneiHS t{t1ð Þr

nð Þ
S tð Þ

z
X

mn

ðt

{?
dt1C {ð Þ

Lmn t{t1ð Þe{iHS t{t1ð ÞdneiHS t{t1ð Þr
nð Þ

S tð Þd{
m

z
X

mn

ðt

{?
dt1C {ð Þ

Rmn t{t1ð Þe{iHS t{t1ð ÞdneiHS t{t1ð Þr
n{1ð Þ

S tð Þd{
m

z
X

mn

ðt

{?
dt1C zð Þ

Lnm t1{tð Þd{
mr

nð Þ
S tð Þe{iHS t{t1ð ÞdneiHS t{t1ð Þ

z
X

mn

ðt

{?
dt1C zð Þ

Rnm t1{tð Þd{
mr

nz1ð Þ
S tð Þe{iHS t{t1ð ÞdneiHS t{t1ð ÞzH:c::

ð35Þ
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where the correlation function are defined as

C zð Þ
amn t{t1ð Þ~trR f {am tð Þfan t1ð ÞrB

h i
~ f {am tð Þfan t1ð Þ
D E

,

C {ð Þ
amn t{t1ð Þ~trR fan tð Þf {am t1ð ÞrB

h i
~ fan tð Þf {am t1ð Þ
D E

:

ð36Þ

Introducing the following super-operators

A zð Þ
am tð Þ~

X
n

ðt

{?
dt1C zð Þ

anm t1{tð Þe{iHS t{t1ð ÞdneiHS t{t1ð Þ,

A {ð Þ
am tð Þ~

X
n

ðt

{?
dt1C {ð Þ

anm t{t1ð Þe{iHS t{t1ð ÞdneiHS t{t1ð Þ,

ð37Þ

then, the Eq. (35) can be rewritten as a compact form

L
Lt

r
nð Þ

S tð Þ

~{i HS,r
nð Þ

S tð Þ
h i

{
X

m

r
nð Þ

S tð ÞA zð Þ
m tð Þd{

mzd{
mA {ð Þ

m tð Þr nð Þ
S tð Þ

n

{A {ð Þ
Lm tð Þr nð Þ

S tð Þd{
m{A {ð Þ

Rm tð Þr n{1ð Þ
S tð Þd{

m

{d{
mr

nð Þ
S tð ÞA {ð Þ

Lm tð Þ{d{
mr

nz1ð Þ
S tð ÞA zð Þ

Rm tð ÞzH:c:
o
:

ð38Þ

where A +ð Þ
m tð Þ~

X
aA +ð Þ

am tð Þ. The above equation is the starting point of the non-
Markovian FCS calculation.

Non-Markovian full counting statistics. In this subsection, we outline the procedure
to calculate the non-Markovian FCS based on Eq. (38). The FCS can be obtained from
the cumulant generating function (CGF) F (x) which related to the probability
distribution P (n, t) by54,55 e{F xð Þ~

X
nP n,tð Þeinx , where x is the counting field. The

CGF F (x) connects with the particle-number-resolved density matrix r(n) (t) by
defining S x,tð Þ~

X
nP nð Þ tð Þeinx . Evidently, we have e2F(x) 5 Tr[S (x, t)], where the

trace is over the eigenstates of the QD molecule system. Since Eq. (38) has the
following form _r nð Þ~Ar nð ÞzCr nz1ð ÞzDr n{1ð Þ, then, S (x, t) satisfies
_S~ASze{ixCSzeixDS:LxS, where S is a column matrix, and A, C and D are three
square matrices. The specific form of Lx can be obtained by performing a discrete
Fourier transformation to the matrix element of Eq. (38). In the low frequency limit,
the counting time, namely, the time of measurement is much longer than the time of
tunneling through the QD molecule system. In this case, F (x) is given by34,40,43,55–57

F (x) 5 2l1 (x) t, where l1 (x) is the eigenvalue of Lx which goes to zero for x R 0.
According to the definition of the cumulants one can express l1 (x) as

l1 xð Þ~
X?

k~1

Ck

t
ixð Þk

k!
. The low order cumulants can be calculated by the Rayleigh–

Schrödinger perturbation theory in the counting parameter x. In order to calculate the
first four current cumulants we expand Lx to four order in x

Lx~L0zL1xz
1
2!

L2x2z
1
3!

L3x3z
1
4!

L4x4z � � � : ð39Þ

and define the two projectors40,43,56,58 P~P2~ 0j ii ~0

 		


and Q 5 Q2 5 1 2 P, obeying
the relations PL0 5 L0P 5 0 and QL0 5 L0Q 5 L0. Here, j0ææ is the right eigenvector of
L0, i.e., L0 j0ææ 5 0, and ~0


 		

:~1 is the corresponding left eigenvector. In view of L0

being singular, we also introduce the pseudoinverse according to R~QL{1
0 Q, which

is well-defined due to the inversion being performed only in the subspace spanned by
Q. After a careful calculation, l1 (x) is given by

l1 xð Þ~ ~0

 		


L1 0j iix

z
1
2!

~0

 		


L2 0j ii{2 ~0

 		


L1RL1 0j ii
� �

x2

z
1
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L3 0j ii{3 ~0

 		


L2RL1zL1RL2 0j ii
�
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{12 ~0
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ð40Þ

From Eq. (40) we can identify the first four current cumulants:

C1=t~ ~0

 		


L1 0ij i
�

i, ð41Þ

C2=t~ ~0

 		


L2 0ij i{2 ~0

 		


L1RL1 0ij i
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i
2
, ð42Þ

C3=t~ ~0
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�
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3
,
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C4=t~ ~0 L4j j0

 �
 �

{6 ~0 L2RL2j j0

 �
 ��

{4 ~0 L3RL1zL1RL3j j0

 �
 �

{12 ~0 L2R RL1P{L1Rð ÞL1j j0

 �
 �
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 �
 �
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 �
 �

{24 ~0


 		L1R R2L1PL1P{RL1PL1R

�
{L1R2L1P

{RL1RL1PzL1RL1RÞL1 0j ii�
�

i4:

ð44Þ

Here, it is important to emphasize that the first four cumulants Ck are directly related
to the transport characteristics. For example, the first-order cumulant (the peak
position of the distribution of transferred-electron number) C1~�n gives the average
current ÆIæ 5 eC1/t. The zero-frequency shot noise is related to the second-order
cumulant (the peak-width of the distribution) S~2e2C2

�
t~2e2 n2{�n2

� ��
t. The

third-order cumulant C3~ n{�nð Þ3 and four-order cumulant C4~ n{�nð Þ4{
3 n{�nð Þ2

2
characterize, respectively, the skewness and kurtosis of the distribution.

Here, � � �ð Þ~
X

n � � �ð ÞP n,tð Þ. In general, the shot noise, skewness and kurtosis are
represented by the Fano factor F2 5 C2/C1, F3 5 C3/C1 and F4 5 C4/C1, respectively.
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40. Flindt, C., Novotný, T., Braggio, A., Sassetti, M. & Jauho, A. P. Counting Statistics
of Non-Markovian Quantum Stochastic Processes. Phys. Rev. Lett. 100, 150601
(2008).

41. Zedler, P., Schaller, G., Kiesslich, G., Emary, C. & Brandes, T. Weak-coupling
approximations in non-Markovian transport. Phys. Rev. B 80, 045309 (2009).

42. Emary, C. Counting statistics of cotunneling electrons. Phys. Rev. B 80, 235306
(2009).
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