Strongly interacting two-electron fermions at an orbital Feshbach resonance

Few-body Physics in Cold Atomic Gases
Beijing, April 15th 2016

Leonardo Fallani
Department of Physics and Astronomy & LENS
University of Florence
Two-electron 173Yb fermions

Two internal degrees of freedom with long coherence times:

- **Nuclear spin**
- **Electronic orbital**

Nuclear spin
- e: 5/2, 3/2, 1/2, -1/2, -3/2, -5/2

Electronic orbital
- g: 5/2, 3/2, 1/2, -1/2, -3/2, -5/2

3P_0 and 1S_0 states are indicated.
Optical clock technology:

Collaboration with Yb clock team @ INRIM (Turin)

578nm clock transition (~10 mHz linewidth)
Remote stabilization of a spectroscopy laser

Frequency dissemination (traced to SI primary standards) beyond GPS

Absolute frequency measurement in a non-metrological lab (quantum gases)

Long-distance optical fiber link

INRIM-LENS optical fiber link (642 km)

Metrological institute
Primary SI standards

173Yb ultracold fermions for quantum simulation
Long-distance optical fiber link

INRIM-LENS optical fiber link (642 km)

Metrological institute
Primary standards

Remote stabilization of a spectroscopy laser
Frequency dissemination (traced to SI primary standards)
Beyond GPS

Absolute frequency measurement in a non-metrological lab (quantum gases)

173Yb ultracold fermions for quantum simulation

Frequency vs. time (a)
Normalized atom number

Frequency offset vs. time (b)

Absolute frequency of ^{173}Yb clock transition

$$f = 518\,294\,576\,845\,268\,(10)\text{ Hz}$$

TABLE 1. Uncertainty budget of the $^{173}\text{Yb} \, ^1S_0-^3P_0$ absolute frequency, expressed in Hz at 578 nm.

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Bias (Hz)</th>
<th>Uncertainty (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lorentzian fit (*)</td>
<td>–</td>
<td>0.8 – 5</td>
</tr>
<tr>
<td>Cs fountain statistical (*)</td>
<td>–</td>
<td>0.9 – 2</td>
</tr>
<tr>
<td>Comb INRIM statistical (*)</td>
<td>–</td>
<td>0.4 – 1.2</td>
</tr>
<tr>
<td>Comb LENS statistical (*)</td>
<td>–</td>
<td>1 – 3</td>
</tr>
<tr>
<td>Total Type A ()</td>
<td></td>
<td>1.9</td>
</tr>
<tr>
<td>Cs fountain standard accuracy</td>
<td>–</td>
<td>0.1</td>
</tr>
<tr>
<td>Fiber link phase slips (***)</td>
<td>–</td>
<td>0.1 – 5</td>
</tr>
<tr>
<td>Quadratic Zeeman</td>
<td>−0.59</td>
<td>0.03</td>
</tr>
<tr>
<td>Lattice Stark</td>
<td>−</td>
<td>8</td>
</tr>
<tr>
<td>Blackbody radiation</td>
<td>−1.24</td>
<td>0.05</td>
</tr>
<tr>
<td>Probe laser intensity</td>
<td>–</td>
<td>0.00015</td>
</tr>
<tr>
<td>Gravitational redshift</td>
<td>2.277</td>
<td>0.005</td>
</tr>
<tr>
<td>Total Type B (*)</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Total (*)</td>
<td>0.5</td>
<td>10</td>
</tr>
</tbody>
</table>

Non-metrological LENS setup (quantum gases, slow sample production cycle)

<2 Hz (4$x10^{-15}$) precision on averaging times of a few hours

x400 improvement on previous value of ^{173}Yb clock transition frequency (NIST, 2005)
Collisional physics

The interaction strength depends on the electronic state...

...but not on the nuclear spin:

SU(N) symmetry

Different scattering lengths for the two states:

Twoorbital spin exchange

Two fermions (g+e) in a trap

Antisymmetrization of the two-particle state:

\[
|\text{eg}^+\rangle \propto \left[g_1 e_2 + e_1 g_2 \right] \left[\uparrow_1 \downarrow_2 - \downarrow_1 \uparrow_2 \right]
\]

\[
|\text{eg}^-\rangle \propto \left[g_1 e_2 - e_1 g_2 \right] \left[\uparrow_1 \downarrow_2 + \downarrow_1 \uparrow_2 \right]
\]

orbital-antisymmetric spin-triplet
orbital-symmetric spin-singlet
Two fermions (g+e) in a trap

A local spin-exchange interaction between different "orbitals" arises:

Different scattering lengths for the two states:

\[|eg^+\rangle \propto |\uparrow_g \downarrow_e\rangle - |\downarrow_g \uparrow_e\rangle \]
\[|eg^-\rangle \propto |\uparrow_g \downarrow_e\rangle + |\downarrow_g \uparrow_e\rangle \]
A magnetic field B induces a mixing between the two channels:

$$|\psi\rangle = \alpha |eg^-\rangle + \beta |eg^+\rangle$$

Spectrum of the 578nm clock transition in a magic-wavelength 3D optical lattice

see related work by S. Fölling group:
F. Scazza et al., Nat. Phys. 10, 779 (2014)
A magnetic field B induces a mixing between the two channels:

$$|\psi\rangle = \alpha |eg^-\rangle + \beta |eg^+\rangle$$

B field quench + free evolution

$$|\psi(t)\rangle = \alpha |eg^-\rangle + \beta e^{-i2V_{ext}/\hbar} |eg^+\rangle$$

Ground-state magnetization:

$$|\langle g^\uparrow|\psi(t)\rangle|^2 = \frac{1}{2} + \alpha \beta \cos \left(\frac{2V_{ex}}{\hbar} t\right)$$

Two-orbital spin exchange

G. Cappellini et al., PRL 113, 120402 (2014)

see related work by S. Fölling group:
Two-orbital spin exchange

Spin-exchange energy in a 3D optical lattice:

Very large spin-exchange energy:
\[2V_{\text{ex}} = U_{\text{eg}^+} - U_{\text{eg}^-} > 10 \, \text{kHz} \gg k_B T \]

Very different scattering lengths:
\[a_{\text{eg}^-} \sim +220 \, a_0 \]
\[a_{\text{eg}^+} \sim +2000 \, a_0 \]

Orbital magnetism, Kondo physics, ...

G. Cappellini et al., PRL 113, 120402 (2014)
Two-orbital spin exchange

Test of SU(N) symmetry:

same spin-exchange frequency verified at 3×10^{-3} level
A new kind of Feshbach resonance between atoms in different nuclear and electronic states, driven by the two-orbital spin-exchange interaction very small, but finite, differential Zeeman shift $113 \Delta m \text{ Hz/G}$
Preparation of a two-orbital Fermi gas in the open-channel mixture:
Preparation of a two-orbital Fermi gas in the open-channel mixture:

Orbital Feshbach resonance

G. Pagano et al., PRL 115, 265301 (2015)
Preparation of a two-orbital Fermi gas in the open-channel mixture:
Orbital Feshbach resonance

Preparation of a two-orbital Fermi gas in the open-channel mixture:

Anisotropic hydrodynamic expansion of the Fermi gas:

C. Menotti, P. Pedri, S. Stringari

A strongly interacting gas of two-orbital fermions

G. Pagano et al., PRL 115, 265301 (2015)
A new tool for controlling interactions in two-orbital Fermi gases

Aspect ratio vs B:

Scattering length vs B:

related work by S. Fölling group:
Orbital Feshbach resonance

Atom loss rate vs B:

Measured 1/e lifetime at resonance ~ 400 ms
Atomic density $\sim 6 \times 10^{13}$ at/cm3
Orbital Feshbach resonance

Feshbach resonance vs. Δm

Resonance condition: $\Delta m \delta g \mu_N B = E_C$

$SU(N)$ symmetry \rightarrow Same bound state energy E_C for different Δm \rightarrow $B \sim \Delta m^{-1}$
Feshbach resonance vs. Δm

Resonance condition:

$$\Delta m \delta g \mu_N B = E_C$$

SU(N) symmetry \rightarrow Same bound state energy E_C for different Δm \rightarrow $B \sim \Delta m^{-1}$
A new tool for controlling interactions in two-orbital Fermi gases

narrow Feshbach resonance

\[
T_c/T_F = f\left(\frac{1}{k_Fa_s}\right)
\]

BEC-BCS crossover?
A new tool for controlling interactions in two-orbital Fermi gases

Outlook

A new tool for controlling interactions in two-orbital Fermi gases

narrow Feshbach resonance

spin-orbit coupling

BEC-BCS crossover?

Topological superfluids?
Credits

Funding from ERC (CoG 2016), EU, MIUR, INFN

Lorenzo Livi
Marco Mancini
Giacomo Cappellini
Jacopo Catani
Massimo Inguscio
L. F.

Guido Pagano
Carlo Sias

Exp. collaboration with INRIM (Torino):
C. Clivati, M. Pizzocaro, D. Calonico, F. Levi
Outlook

Two-orbital quantum magnetism
G. Cappellini et al., *PRL* 113, 120402 (2014)

Orbital Feshbach resonance

Strongly interacting 1D SU(N) fermions

Fermions in synthetic dimensions and edge states
M. Mancini et al., *Science* 349, 1510 (2015)

Optical-fiber absolute frequency dissemination
Coupling nuclear spins

g

$\frac{5}{2}$ $\frac{3}{2}$ $\frac{1}{2}$ $\frac{-1}{2}$ $\frac{-3}{2}$ $\frac{-5}{2}$

^1S_0
Coupling nuclear spins

Raman transitions coupling coherently different nuclear spin states:

\[\pi \sigma^+ \pi \sigma^+ \pi \sigma^+ \pi \sigma^+ \pi \]

\[g \quad 5/2 \quad 3/2 \quad 1/2 \quad -1/2 \quad -3/2 \quad -5/2 \]

\[\sim 6 \text{ GHz} \]

\[\gamma \sim 100 \text{ kHz} \]

\[^1S_0 \]

\[^3P_1 \]
Simulating an "extra dimension"

Analogous to coherent tunnelling coupling in a lattice

O. Boada et al., PRL 108, 133001 (2012)
Gauge fields and edge states

An atomic Hall ribbon in a real+synthetic space

Visualization of cyclotron skipping-orbits

A hallmark of quantum Hall physics
Gauge fields and edge states

A hallmark of quantum Hall physics

M. Mancini et al., Science 349, 1510 (2015)

A. Celi et al., PRL 112, 043001 (2014)

Visualization of cyclotron skipping-orbits

An atomic Hall ribbon in a real+synthetic space
Outlook

Two-orbital quantum magnetism
G. Cappellini et al., *PRL* 113, 120402 (2014)

Orbital Feshbach resonance

Strongly interacting 1D SU(N) fermions

Fermions in synthetic dimensions and edge states
M. Mancini et al., *Science* 349, 1510 (2015)

Optical-fiber absolute frequency dissemination
1D multicolor SU(N) fermions

Momentum distribution of repulsive SU(N) 1D fermions measured after time-of-flight expansion:
1D breathing mode

For $N \rightarrow \infty$ the breathing frequency approaches that of spinless bosons

«bosonization» of large-spin 1D fermions

C. N. Yang et al., CPL 28, 020503 (2011)
X.-W. Guan et al., PRA 85, 033633 (2012)
Thank you!

Two-orbital quantum magnetism
G. Cappellini et al., *PRL* 113, 120402 (2014)

Orbital Feshbach resonance

Strongly interacting 1D SU(N) fermions

Fermions in synthetic dimensions and edge states
M. Mancini et al., *Science* 349, 1510 (2015)

Optical-fiber absolute frequency dissemination