New Physics from Tensor-Network Treatments of Potts and Heisenberg Models

B. Normand (*Renmin University, Beijing*)

![Graphs showing thermodynamic properties and ground state energy per site](image.png)
Road Map

- tensor-network representations and RG techniques
- classical systems: the partition function
- **Potts models**, irregular lattices and partial order
- thermodynamics and phase transitions
- multiple transitions and types, subextensive entropic driving
- quantum systems: the wavefunction
- MPS, PEPS and SVD
- going beyond PEPS for frustrated systems: PESS
- Simplex Solid States, variational Ansätze, calculations
- the **$S = 1/2$ kagome Heisenberg antiferromagnet**
 - 3-, 5- and 9-PESS
 - energetic calculations
 - accuracy and symmetry
 - nature of the ground state
- summary
Tensor-Network Representations

Tensor-network states are expanding rapidly to many fields, including quantum information and quantum gravity. For lattice models a tensor network represents

- classical: partition function;
- quantum: wavefunction.

The degrees of freedom of a system with coordination number z are represented by one or more rank-z tensors. Each index has bond dimension D.

Tensor manipulation by
- contraction
- singular-value decomposition

gives rise to a tensor-based renormalisation group. Thus the method is infinite in space, with truncation achieved through D.

\begin{align*}
\text{(a)} & \quad T_{ijkl} \\
\text{(b)} & \quad S_{jk} \\
\text{(c)} & \quad S_{jk}^2 \\
\text{(d)} & \quad T_{ijkl}^2
\end{align*}
Classical Systems: the Potts Model

The \(q \)-state Potts model is specified by

\[
\mathcal{H} = J \sum_{\langle i,j \rangle} \delta_{\sigma_i \sigma_j} - H \sum_i \delta_{\sigma_i,0},
\]

where \(\sigma_i = 0, 1, \ldots, q - 1 \) is a discrete variable taking one of \(q \) possible values. The Ising Model is \(q = 2 \).

We consider only the antiferromagnetic Potts model, \(J > 0 \).

\(H \) is a field coupling to one of the \(q \) components and can be used to deduce the effective magnetisation and the susceptibility.

The Potts model on any given lattice is characterised by \(q \), the number of degrees of freedom at each site, and \(z \), the coordination number number of the lattice.

Crude generalisation:

- \(q > z \): entropy-dominated, no order.
- \(q \sim z \): multi-sublattice order, partial order, entropy-driven transitions ...
- \(q < z \): order, frustration, multiple transitions, ...

Any lattice has a value \(q_c \) where some form of order sets in, at a zero-temperature phase transition.
Two-Dimensional Lattices

The 8 Laves lattices: duals to the Archimedean lattices which are neither self-dual nor mutually dual.

The 11 Archimedean lattices.
Potts-Model Thermodynamics

The partition function is to be cast in the form of a tensor network,

\[Z = \sum_{\alpha\beta\gamma\delta...} T_{\alpha\beta\gamma\delta...} \]

\[Z = \sum_{\alpha\beta\gamma\delta...} T_{\alpha\beta\gamma\delta...} \]

Take the example of the Union Jack lattice

\[\mathcal{H}_{UJ} = J(\delta_{\sigma_1\sigma_2} + \delta_{\sigma_2\sigma_3} + \delta_{\sigma_3\sigma_4} + \delta_{\sigma_4\sigma_1})/2 \]
\[+ J(\delta_{\sigma_1\sigma_5} + \delta_{\sigma_2\sigma_5} + \delta_{\sigma_3\sigma_5} + \delta_{\sigma_4\sigma_5}). \]

One may trace over \(\sigma_5 \) to obtain

\[T_{\alpha\beta\gamma\eta} = e^{-\frac{\beta}{2}(\delta_{\alpha,0}+\delta_{\beta,0}+\delta_{\gamma,0}+\delta_{\eta,0})} \sum_{\theta} e^{-\beta(\delta_{\theta,0}+\delta_{\theta+\alpha,0}+\delta_{\theta+\alpha+\beta,0}+\delta_{\theta+\eta,0})} \]

The result is a tensor network defined and evaluated on the dual square lattice.

There are different techniques for the evaluation of a tensor network:

- renormalisation-group methods such as TRG and SRG;
- projective methods such as iTEBD, found to be most efficient here.

Once the partition function \(Z \) is obtained, one has access to all thermodynamic quantities. Of most interest in characterising Potts models are the free energy

\[F = -k_B T \ln Z, \]

the entropy

\[S(T) = -\frac{\partial F}{\partial T} \]

and the specific heat

\[C(T) = -T \frac{\partial^2 F}{\partial T^2}. \]
Partial Order: the Diced Lattice

The diced lattice is dual to the kagome lattice. It has clearly inequivalent A and B sites with respective coordinations of 6 (1/3 of sites) and 3 (2/3). The Potts Model with \(q = 3 \) on the square lattice, which has the same average coordination, is critical at \(T = 0 \). The \(q = 3 \) Potts model on the diced lattice has

- a robust transition in \(C(T) \) at finite \(T_c = 0.508(1)J \),
- partial order only on the A-sublattice sites,
- obvious implications for the effects of an irregular lattice.

This partial order is driven by an extensive entropy: there exist very many states in the ground manifold with the same energy (all bonds satisfied), but many more with disorder on the B sites than on the A sites. These entropic contributions are calculated directly from \(Z \) and approach the expectation from \(q = 2 \) remaining degrees of freedom on 2/3 of the sites. Comparisons with exact solutions and QMC results validate the tensor-network method.
Partial Order: the Union Jack Lattice

The $q = 4$ Potts model on the Union-Jack lattice is far more subtle. The average coordination matches the triangular lattice, which is critical at $T = 0$. There are 2 competing sublattices on which partial order may occur. The result is an extremely subtle transition:

- difficult to detect
- previously unknown
- requires proof that the discontinuity in $C(T)$ is robust.

The entropy result $S_{\mu}(0) = 0.43097359$ allows very accurate characterisation of the ground state.

The existence of this transition is related to the 3-bond colouring problem on the dual $(4,8^2)$ lattice, the fully packed loop model on this lattice and the $q = 3$ Potts model on the square-kagome lattice.
Partial Order: Centred Diced Lattice

On the centred diced lattice there is no competition between sublattices. For the \(q = 4 \) Potts model, partial order on the highest-coordinated \(A \) sites sets in at a very robust transition.

The entropy \(S_{cd,q=4} = 0.510380 \) is almost exactly that of the \(q = 3 \) decorated honeycomb lattice, proving almost perfect \(A \)-sublattice order. This result is related to the 3-bond colouring and \(n = 2 \) FPL problems on the dual \((4,6,12)\) Archimedean lattice, and to \(n = 3 \) CPL and six-vertex models on the kagome lattice, all of which are non-critical.

In fact the \(q = 5 \) Potts model is also ordered on this lattice, the highest value of \(q \) known in any 2D geometry.
Partial Order: Magnetisation and Susceptibility

The field term in \mathcal{H} can be used to define many different types of magnetisation and corresponding susceptibilities $\chi = \frac{\partial M}{\partial H}$.

- M contains the most information to characterise the (partially) ordered state, including "defects" from perfect order.
- χ contains the clearest indication of a phase transition.
- Although M can be calculated with larger D than C, the T grid specifies the accuracy in the determination of T_c.

$q = 3$ Potts model on the centred diced lattice (partially ordered phase at intermediate temperature).

$q = 4$ Potts model on the Union-Jack lattice.
Partial Order with Sub-Extensive Entropy

The entropy controls the onset of partial order. However, an extensive entropy is not a prerequisite. Certain models exhibit the same phenomenon with an entropy in 2D that scales only linearly in the system length:

- \(q = 3 \) Potts model on the generalised decorated square lattice (\(q = 4 \) is critical).
- \(q = 3 \) Potts model on the IIA dilute centred diced lattice.

\[
S_0 = \lim_{L \to \infty} \frac{\log(6 \times 2^L - 6)}{L^2} = 0
\]
Multiple Phase Transitions

Some Potts models, generally with $q < z$, have a complex phase diagram with intermediate-temperature partial order and more than one phase transition:

- Ising model on the Union-Jack lattice with $|J_C/J_{AB}| \sim 1$: complete loss of order between mutually incompatible competitors (one entropy-favoured).
- $q = 3$ Potts model on the Union-Jack lattice with $J_C > 2J_{AB}$: zero-entropy 3-sublattice-ordered ground state is overcome at finite temperatures.
Detecting Phase Transitions

Tensor-network techniques allow some physical properties to be detected directly from the properties of the tensor, rather than from thermodynamic indicators.

Define the quantity

\[X = \frac{(\text{Tr} A)^2}{\text{Tr}(A^2)} \]

where \(A_{zz'} = \sum_{x,y} T_{xx'yy'zz'} \) is a \(D \times D \) matrix.

New physics becomes possible: consider the Potts model in 3D (simple cubic lattice).

- \(q = 2 \) (Ising): obtain 10 digits of accuracy in \(T_c \) with \(D = 23 \).
- \(q = 3 \) (first order): competitive accuracy with \(D = 21 \).

<table>
<thead>
<tr>
<th>Method</th>
<th>(T_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTMRG (2001) [38]</td>
<td>4.5393</td>
</tr>
<tr>
<td>TPVA (2005) [39]</td>
<td>4.554</td>
</tr>
<tr>
<td>Algebraic variation (2006) [40]</td>
<td>4.547</td>
</tr>
<tr>
<td>Monte Carlo RG (1996) [42]</td>
<td>4.5115(2)</td>
</tr>
<tr>
<td>HOTRG (D = 23, this work)</td>
<td>4.51152469(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>(\Delta E)</th>
<th>(T_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series expansion (1979) [48]</td>
<td>1.7289(12)</td>
<td>1.818</td>
</tr>
<tr>
<td>Monte Carlo RG (1979) [14]</td>
<td></td>
<td>1.81</td>
</tr>
<tr>
<td>Monte Carlo (1982, L = 8) [45]</td>
<td>0.12</td>
<td>1.81</td>
</tr>
<tr>
<td>Pair approximation (1982) [45]</td>
<td>0.123</td>
<td>1.879</td>
</tr>
<tr>
<td>Monte Carlo (1987, L = 16) [46]</td>
<td>0.2222(7)</td>
<td>1.81618(7)</td>
</tr>
<tr>
<td>Monte Carlo (1991, L = 36) [47]</td>
<td>0.16062(52)</td>
<td>1.816455(35)</td>
</tr>
<tr>
<td>Monte Carlo (1997, L = 36) [18]</td>
<td>0.1614(3)</td>
<td>1.816316(33)</td>
</tr>
<tr>
<td>Monte Carlo (2007, L = 50) [5]</td>
<td>0.1643(8)</td>
<td>1.816315(19)</td>
</tr>
<tr>
<td>TPVA (2002) [19]</td>
<td>0.228</td>
<td>1.8195</td>
</tr>
<tr>
<td>HOTRG (this work)</td>
<td>0.2029</td>
<td>1.8166</td>
</tr>
<tr>
<td>((D = 14))</td>
<td>((D = 21))</td>
<td></td>
</tr>
</tbody>
</table>
Quantum Mechanics: MPS and PEPS

A tensor-network state in 1D is a **matrix-product state** (MPS), the basis of DMRG. An MPS is a *trial wavefunction formed from virtual entangled pairs on neighbouring lattice sites* – a local description of many-body states based on their entanglement structure.

Projected Entangled Pair States (PEPS) are a generalisation of MPS:
- based on virtual maximally entangled pairs of neighbouring sites;
- satisfy the *area law of entanglement entropy* – thought to be the key factor differentiating quantum and classical systems (entanglement is the basis of *topological quantum order*);
- allow a system with exponentially many degrees of freedom to be represented/calculated in **polynomial time**.

Singular Value Decomposition (SVD)
The (entanglement) structure of any quantum wavefunction is revealed under Schmidt decomposition, which for DMRG is a SVD. PEPS are based on local entanglement, making wavefunction construction very simple.

Problems with PEPS
- bond dimension: only low-z systems can be handled with accurate D.
- **frustration**: *fails completely for some systems, e.g. kagome ...* – need to generalise the entangled pair to a *simplex*.
PESS Representation of Simplex Solid States

PESS: Projected Entangled Simplex States

- introduce one type of tensor, A, for the bond entanglement
- and a second type of tensor, S, for the local cluster, or simplex:
 - S contains the multipartite entanglement of the N-site simplex unit.

$$|\Psi\rangle = Tr \left(\cdots S_{abc} A_{aa'} [\sigma_i] A_{bb'} [\sigma_j] A_{cc'} [\sigma_k] \cdots \right) |\cdots \sigma_i \sigma_j \sigma_k \cdots \rangle$$

Begin with Simplex Solid States of the SU(N) quantum antiferromagnet [1], a generalisation of the AKLT state. Each simplex contains a virtual singlet. Take the $S = 2$ kagome lattice as a system of $3 \times S = 1$ spins on each simplex – triangle: $1 \otimes 1 \otimes 1 = 0 \oplus (3 \times 1) \oplus (2 \times 2) \oplus 3$; bond: $2 \otimes 2 = 0 \oplus 1 \oplus 2 \oplus 3 \oplus 4$.

and the PESS for the simplex solid state is the exact ground state of the projection operator

$$H = \sum_{\langle ij \rangle} P_4 (ij)$$

Extending PESS for Simplex Solid States

Simplex solid states can be constructed for any higher spin and indeed any Lie algebra, including SU(N), as long as a unique singlet can be formed in each simplex.

Triangular lattice: SSS defined on a honeycomb lattice, projection tensor A has dimension dD^3 (d = number of physical indices), much less than dD^6 for PEPS treatment. With virtual $S = 1$ states, each triangle is $S = 3$ and $J_1 - J_2$ square lattice: no unique choice of PESS decomposition – can be edge-sharing simplices with tensor dimension dD^4 or corner-sharing simplices with tensor dimension dD^2 – strong simplification of numerics.

$$S_{ijk} = \varepsilon_{ijk}$$

$$H = \sum_{\langle ij \rangle} P_6 (ij)$$
PESS as a Variational Ansatz I

PESS provide a good approximation – which obeys the entanglement area law – for the ground state of any quantum lattice model, and therefore can be used as a variational wavefunction. If

\[H = H_x + H_y + H_z = J \sum_{\langle ij \rangle} (S_i^x S_j^x + S_i^y S_j^y + S_i^z S_j^z) \]

the partition function may be approximated by

\[
Z = \text{Tr} e^{-\beta H} \approx \text{Tr} \left(e^{-\tau H} \right)^M \approx \text{Tr} \left(e^{-\tau H_x} e^{-\tau H_y} e^{-\tau H_z} \right)^M \\
\approx \sum_{\{\sigma^x, \sigma^y, \sigma^z\}} \prod_{n=1}^{M} \langle \sigma^{x,n} | e^{-\tau H_x} | \sigma^{x,n} \rangle \langle \sigma^{x,n} | \sigma^{y,n} \rangle \\
\times \langle \sigma^{y,n} | e^{-\tau H_y} | \sigma^{y,n} \rangle \langle \sigma^{y,n} | \sigma^{z,n} \rangle \\
\times \langle \sigma^{z,n} | e^{-\tau H_z} | \sigma^{z,n} \rangle \langle \sigma^{z,n} | \sigma^{x,n-1} \rangle.
\]

where the (local, Ising, i.e. classical) basis sets are connected by the local transformation matrices

\[
A_{\sigma^{x,n}, \sigma^{y,n}}^{x} = \langle \sigma^{x,n} | \sigma^{y,n} \rangle = \prod_{j} A_{j, \sigma^{x,n}, \sigma^{y,n}}^{x}
\]

and \(\langle \sigma^{\alpha,n} | e^{-\tau H_\alpha} | \sigma^{\alpha,n} \rangle = \prod_{\nabla_{ijk}} S_{\sigma_i^{\alpha,n}, \sigma_j^{\alpha,n}, \sigma_k^{\alpha,n}}^{\alpha} \)

is the Boltzmann weight of \(H_\alpha \) in the same basis, with

\[
S_{\sigma_i, \sigma_j, \sigma_k}^{\alpha} = \exp \left[-\tau J \left(\sigma_i \sigma_j + \sigma_k \sigma_i + \sigma_j \sigma_k \right) \right]
\]

Now:

\[Z \approx \text{Tr} T^M \]

with \(T = T_x T_y T_z \)

and

\[\langle \sigma' | T^\alpha | \sigma \rangle = \prod_{\nabla_{ijk}} S_{\sigma_i', \sigma_j', \sigma_k'}^{\alpha} \prod_{j} A_{\sigma_j', \sigma_j}^{j}. \]

\(T^\alpha \) is a simplex tensor network operator on the honeycomb lattice whose matrix elements contain both the entangled simplex (\(\nabla \)) and projection tensors.
PESS Calculations: Projection, Simplex Choice and Update Scheme

The wavefunction is a product of simplex tensor network operators. With an arbitrary initial PESS wavefunction, application of T^α retains the PESS structure. Systematic projection (a type of iTEBD) yields an increasingly accurate ground state.

- as $\tau \to 0$, non-commutativity errors vanish.
- the PESS bond dimension is doubled at each projection: systematic truncation is required.

Larger simplices yield increasingly accurate results.

PESS calculations still face problems in accessing sufficiently large D. One way to reduce their cost is the simple update scheme where the bond environment is not computed simultaneously, yielding a rapid algorithm reaching larger D.
PESS Calculations: HOSVD

The Hamiltonian for alternating simplices, \(H = H_\Delta + H_\nabla \), has non-commuting terms and is evaluated in a two-step process with
\[
e^{-\tau H} = e^{-\tau H_\Delta} e^{-\tau H_\nabla} + \mathcal{O}(\tau^2),
\]

In the PESS formalism,
\[
e^{-\tau H_\nabla} |\Psi_0\rangle = Tr\left(\ldots T_{\alpha\sigma_i,\sigma_j,\sigma_k}^{\alpha\nabla} S_{\sigma_{i\sigma_j\sigma_k}}^{\beta\Delta} \ldots \right)|\sigma_i\sigma_j\sigma_k\ldots\rangle
\]
with
\[
T_{\alpha\sigma_i,\sigma_j,\sigma_k}^{\alpha\nabla} = \sum_{\sigma_{i\sigma_j\sigma_k}} \langle\sigma_i\sigma_j\sigma_k|e^{-\tau H_\nabla\alpha}\sigma_i'^{\sigma_i'}\sigma_j'^{\sigma_j'}\sigma_k'^{\sigma_k'} S_{\sigma_{i\sigma_j\sigma_k}}^{\alpha\nabla} A_a^{\alpha'} A_b^{\beta} A_c^{\gamma} [\sigma_i'] [\sigma_j'] [\sigma_k'] \rangle.
\]

Now HOSVD is used to decompose \(T \) into renormalised projection and simplex tensors and to include the environment tensors surrounding \(T \), which appear as a singular bond vector \(\lambda \):
\[
\overline{T}_{\alpha\sigma_i,\sigma_j,\sigma_k}^{\alpha\nabla} = \lambda_{\alpha\beta,a}\lambda_{\alpha\beta,b}\lambda_{\alpha\beta,c} T_{\alpha\sigma_i,\sigma_j,\sigma_k}^{\alpha\nabla}
\]
From the HOSVD,
\[
\overline{T}_{\alpha\sigma_i,\sigma_j,\sigma_k}^{\alpha\nabla} = \sum_{a'b'c'} \overline{S}_{\alpha\sigma_i,\sigma_j,\sigma_k}^{\alpha\nabla} U_{\beta,a}^{\alpha'} U_{\beta,b}^{\beta} U_{\beta,c}^{\gamma}
\]
where \(\overline{S}_{\alpha\sigma_i,\sigma_j,\sigma_k}^{\alpha\nabla} \) is the core tensor and \(U \) is a unitary matrix determined by diagonalising the density matrix. The renormalised \(A \) tensor is given by
\[
A_{\alpha\beta}^{\alpha'} [\sigma] = U_{\alpha',\alpha\sigma} \lambda_{\beta,a}^{-1}
\]
By keeping the first \(D \) states for each index, one truncates to a \(DxDxD \) matrix \(S_{\alpha\sigma_i,\sigma_j,\sigma_k}^{\alpha\nabla} \).
The kagome lattice is one of the most frustrated geometries known in real materials. The $S = \frac{1}{2}$ nearest-neighbour kagome Heisenberg antiferromagnet is a candidate quantum spin liquid – a state with:

- no magnetic order,
- breaking no lattice symmetries and
- with a specific topological quantum order.

Understanding the kagome system is currently one of the defining challenges in condensed matter:

- theory: entanglement, fractionalisation, topological order.
- numerics: frustration, high-dimensions, entanglement.
- experiment: unambiguous probes of spin-liquid nature.
- materials growth: realisation, as large single crystals.
Materials with Kagome Geometry

- jarosites, volborthites, langasites, …, organometallics.
- herbertsmithite: \(\text{Cu}^{2+} \) system, \(S = \frac{1}{2} (\text{ZnCu}_3(\text{OH})_6\text{Cl}_2) \);
- pyrochlore geometry, with Zn ions on triangular planes and Cu ions and Zn impurities on kagome planes.
- many experiments supporting spin-liquid nature …
- triangular geometry with Cu ions leads to DM interactions.

$S = \frac{1}{2}$ kagome antiferromagnet: old news

- ground state: no magnetic order
- ultra-short spin correlation length ($\sim 1.3a$)
- ... but dimer-dimer correlations of longer range
- continuum of low-lying singlets, extensive density $N_{\text{sing}} \sim 1.15^N$
- excellent description in terms of nearest-neighbour dimers – “short-range RVB”

Numerics:

- ground-state energy: $e_0 = -0.438J$ per site
- gap (singlet-triplet): not so small, $\Delta \sim 0.18J$
- gap (singlet-singlet): small or zero ...
- $1/3$ magnetisation plateau (a gapped state)

Spin correlations: exponential decay.

Dimer correlations: long-ranged decay ... ?

Various pieces of numerical and analytical evidence in support of spinons, fractionalisation, spin and/or charge deconfinement, ...
Types of spin-liquid ground state

(a) Manifold of degenerate basis states
(b) Type-I gapped spin liquid
(c) Type-II gapped spin liquid
(d) Algebraic spin liquid
All options are still on the table …

SRRVB probably means a type-II gapped spin liquid:
- finite gap,
- no discernible order,
- favoured by some DMRG studies [2],
- \(E = -0.43552J \).

Projected wave-function study (“flux phase”, large-\(N \)) [3] favours
- U(1) Dirac fermions,
- gapless,
- algebraic spin liquid,
- \(E = -0.42866J \).

Large-unit-cell VBC:
- 36- or 72-site unit cell,
- very small gap,
- support from series expansions [1],
- \(E = -0.433J \).

PESS: computing physical properties

Evaluation of PESS expectation values: the wavefunction is projected onto an MPS basis (boundary construction). This process is not variational, but for an MPS basis bond dimension $D_{mps} > 60$, the truncation error $\varepsilon < 10^{-4}$ for the 3- and 9-PESS (more for the 5-PESS, even with $D_{mps} = 140$).

Benchmarking PESS results:
- the 3- and 9-PESS formulations break up/down triangle symmetry;
- the 5-PESS geometry breaks threefold rotation symmetry.

Verify that all associated energies become equal in the limits of small τ and large D and D_{mps} (which are interdependent):
- all symmetries restored in the asymptotic limits,
- expect this to be true also for all other expectation values.
The PESS energy is highly competitive. It will clearly become lower as D is increased. This value is an upper bound (variational); all improvements will deliver lower energies.

The current optimal value is $e_0 = -0.4364(1) \text{J}$ for the 9-PESS with $D = 13$. Values should converge exponentially, but none of the data have reached this regime.

Work in progress …
Nature of the Kagome Ground State

PESS, like MPS, is based on gapped phases. Thus it is highly likely that a maximally refined PESS wavefunction will describe a gapped spin liquid [1,2]:

- large singlet-triplet gap,
- very short spin correlation length,
- \mathbb{Z}_2 topological order,
- RVB phase; dominant dimer resonance processes debated [1].

1) One competing scenario is the **algebraic spin liquid** based on $U(1)$ Dirac fermions. An optimised variational calculation [3] gives $e_0 = -0.4365J$.

Could PESS find this phase? Can the correlation length ξ diverge with D?

2) Another is a **chiral spin liquid** ($S_i S_j x S_k$ finite, spontaneous breaking of TRS), which appears in models with Ising-type next-neighbour couplings [4]…

3) … or perhaps this is some kind of **double-semion state** (TRS-preserving), appearing even in systems with isotropic next-neighbour couplings [5].

Calculations are of necessity moving towards more sophisticated indicators of the ground-state nature, e.g. **entanglement spectrum, modular matrices**.

Summary

- tensor-network methods for lattice models: huge progress.
- classical systems: application to any lattice; infinite system size.
- all thermodynamic quantities, identify phase transitions and exponents.
- irregular lattices: new phase transitions, partial order, very high q_c.
- frustrated quantum systems: PESS is a qualitative breakthrough.
- PESS reduces required tensor sizes and enlarges the accessible D range.
- HOSVD + iTEBD + simple update scheme = powerful calculational method.
- application to kagome lattice: $e_o/J = -0.4364(1)$ … so far – very competitive energy with clear scope for improvement.
- immediate future: i) larger D – calculations in progress to reach $D = 30$.
 ii) correlation functions, entanglements, modular matrices ...
 iii) better treatment of bond environment,
 iv) further frustrated quantum lattice models.

- physics: new insight into a) phase transitions in Potts models and b) the kagome wavefunction and its entanglement structure.