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Necessary and sufficient conditions for local creation of quantum correlation
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Quantum correlation can be created by a local operation from some initially classical states. We prove that
the necessary and sufficient condition for a local trace-preserving channel to create quantum correlation is that
it is not a commutativity-preserving channel. This condition is valid for arbitrary finite dimension systems. We
also derive the explicit form of commutativity-preserving channels. For a qubit, a commutativity-preserving
channel is either a completely decohering channel or a mixing channel. For a three-dimensional system (qutrit),
a commutativity-preserving channel is either a completely decohering channel or an isotropic channel.
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Quantum correlation is the unique phenomenon of quantum
physics and believed to be a resource for quantum-information
processes, which can generally surpass the corresponding
classical schemes. Many previous studies focus on entan-
glement, a well-known quantum correlation, because of its
apparent role in teleportation, superdense coding [1,2], etc.
Recently measures of the nonclassicalness of correlation,
such as quantum discord [3] and quantum deficit [4,5], have
begun to attract much attention since the discovery that
some quantum-information schemes can be realized without
entanglement but with a positive quantum discord [6,7].
Much progress has been made to quantify the amount of
quantum correlation in different physical systems [8,9] and
to give it intuitive and operational interpretations. It is shown
that quantum discord can be operationally interpreted as the
minimum information missing from the environment [10].
One-way quantum deficit [11,12] has been found as the reason
for entanglement irreversibility [13] and can be related to
quantum entanglement via an interesting scheme [14,15].

Quantum noise usually plays a destructive role in quantum
information process. However, there are situations that local
quantum noise can enhance nonlocal quantum properties for
some mixed quantum states. For example, local amplitude
damping can increase the average teleportation fidelity for a
class of entangled states [16–18]. Quantum discord can also
be increased or created by local noise [19–21]. An interesting
result is that any separable state with positive quantum discord
can be produced by local positive operator-valued measure on
a classical state in a larger Hilbert space [22]. In fact, almost
all states in the Hilbert space contain quantum correlation,
and an arbitrary small disturbance can drive a classical
state into a quantum state with nonzero quantum correlation
[23]. Counterintuitively, it has recently been discovered that
mixedness is as important as entanglement for quantum
correlation. In particular, some mixed states contain more
quantum discord than that of a maximally entangled pure state
when the dimension of the system is large enough [15]. Thus
it is of interest to know how the effect of mixedness on the
quantum correlation of quantum states. The condition for local
increase of quantum correlation has been derived for the qubit
case [24], and it has been pointed out that this condition is not
valid for high-dimension systems.
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In this article we derive a simple necessary and sufficient
condition for a local channel to create quantum correlation
in some half-classical states, which is valid for arbitrary
finite dimension systems. A trace-preserving local channel
can create quantum correlation if and only if it is not a
commutativity-preserving channel. For the qubit case we show
that a commutativity-preserving channel is either a mixing
channel or a completely decohering channel. This confirms the
result in Ref. [24]. For the qutrit case, quantum correlation can
be created by a local channel in some half-classical input states
if and only if the channel is neither a completely decohering
channel nor an isotropic channel. We also analyze the reason
for a local mixing channel to create quantum correlation in a
qutrit situation and then give a conjecture to extend the result
of qutrits to arbitrary finite-dimension systems.

The total correlation between two quantum systems is
composed of classical and quantum correlations. From this
point of view, quantum correlation is defined as the difference
between total and classical correlations. Therefore, various
measures of quantum correlation defined for one party of
a composite system vanish for exactly the same class of
states, called half-classical states. Because classical correlation
is defined by the correlation that can be revealed by local
measurements, a state ρAB is half classical on B if and only if
there exists a measurement on B that does not affect the total
state. As proved in Ref. [25] a half-classical state on B can be
written as

ρAB =
∑

i

piρ
αi

A ⊗ |αi〉B〈αi |, (1)

where {|αi〉B} consist of an orthogonal basis for the Hilbert
space of subsystem B, and ρ

αi

A are corresponding density
matrices of A. The subsystem A can be a single quantum
particle or an ensemble of quantum particles. In the following,
by quantum correlation, we mean quantum correlation defined
on subsystem B. The main purpose of this paper is to
characterize the channel �B satisfying

IA ⊗ �B(ρAB) ∈ D0 ∀ ρAB ∈ D0, (2)

where D0 is the set of half-classical states. Before providing
the condition, we first introduce a class of quantum channels,
which we call commutativity-preserving channels.

Definition 1 (commutativity-preserving channel). A
commutativity-preserving channel �CP is the channel that can
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preserve the commutativity of any input density operators; i.e.,

[�CP(ξ ),�CP(ξ ′)] = 0 (3)

holds for any density operators satisfying [ξ,ξ ′] = 0.
It is worth mentioning an equivalent definition of

a commutativity-preserving channel. A channel � is a
commutativity-preserving channel if and only if

[�(φ),�(ψ)] = 0 (4)

holds for any pure states satisfying 〈φ|ψ〉 = 0. The “only if”
part is obtained directly by choosing ξ = |φ〉〈φ| and ξ ′ =
|ψ〉〈ψ |. Conversely, if Eq. (4) holds, by writing ξ and ξ ′ on
their common eigenbasis, we arrive at Eq. (3).

Now we are ready to prove the first main result of this paper.
It holds for arbitrary finite-dimension systems.

Theorem 1. A channel � acting on subsystem B can
create quantum correlation between subsystems A and B for
some input half-classical state ρAB if and only if it is not a
commutativity-preserving channel.

Proof. Any separable state can be written as

ξAB =
∑

i

piξ
A
i ⊗ ξB

i , (5)

where ξA
i are linearly independent. We will first prove that ξAB

is a half-classical state if and only if[
ξB
i ,ξB

j

] = 0 ∀ i,j. (6)

For proving the “only if” part, we notice that for any half-
classical state, there exists a measurement basis �

αi

B that does
not affect the state. Therefore,∑

i

piξ
A
i ⊗ (

ξB
i − �

αj

B ξB
i �

αj

B

) = 0. (7)

Because ξA
i are linearly independent, ξB

i is diagonal on {�αj

B }
and thus satisfies Eq. (6). Conversely, if Eq. (6) holds, ξB

i and
ξB
j have eigenvectors in common for any i and j . By choosing

these eigenvectors as the basis for von Neumann measurement,
the state does not change after the measurement, which means
that ξAB is a half-classical state. Now consider an arbitrary
half-classical state in the form of Eqs. (5) and (6) as the input
state, the channel � acting on subsystem B leads the state
to ξ ′

AB ≡ IA ⊗ �B(ξAB) = ∑
i piξ

A
i ⊗ �(ξB

i ), which is still a
half-classical state if and only if[

�
(
ξB
i

)
,�

(
ξB
j

)] = 0, (8)

for arbitrary choice of ξB
i and ξB

j satisfying Eq. (6). This
is just the definition of a commutativity-preserving channel.
Therefore, the channel � can create quantum correlation for
some input half-classical states if and only if it is not a
commutativity-preserving channel. This completes the proof.

The rest of this paper is devoted to exposing the exact form
of a commutativity-preserving channel.

Since [I,ρ] = 0, ∀ ρ, we obtain a necessary condition for
a commutativity-preserving channel

[�(I ),�(ρ)] = 0 ∀ ρ. (9)

When B is a qubit, Eq. (9) is also the sufficient condition. The
reason is as follows. By using the linearity of �, the left-hand

side of Eq. (4) can be written as

1
2 [�(|φ〉〈φ| + |ψ〉〈ψ |),�(|ψ〉〈ψ | − |φ〉〈φ|)]

= 1
2 [�(I ),�(uσ zu†)], (10)

where |ψ〉 = u|0〉 and |φ〉 = u|1〉. Since any qubit state ρ can
be decomposed as ρ = (I + nxσx + nyσy + nzσz)/2, Eq. (4)
is equivalent to Eq. (9). From this observation, we can see that
a qubit channel � is commutativity-preserving if and only if
it is one of the following two cases:

Case 1. �(I ) = I , which means that � is a unital channel.
Here we define a mixing channel �M as

S(�M (ρS)) � S(ρS) ∀ ρS, (11)

where S(ρ) ≡ −Tr(ρ log2 ρ) is the von Neumann entropy. It is
worth mentioning that when a channel is a mixing channel, its
extension to larger systems IA ⊗ �M

S is still a mixing channel.
As proved in Ref. [26], a mixing channel is equivalent to a
unital channel.

Case 2. �(I ) 	= I . Then the diagonal basis of �(I ) is
specified. According to Eq. (8), the two matrices �(ρ) and
�(I ) share eigenvectors. In other words, the channel � takes
any input state ρ to a diagonal form on the eigenbasis of �(I )
and is thus a completely decohering channel.

Therefore, when B is a qubit, a commutativity-preserving
channel is either a mixing channel or a completely decohering
channel. This confirms the result in Ref. [24].

In the following, we will move on to study the exact form of
a commutativity-preserving channel for high-dimension cases.

Definition 2 (isotropic channel). An isotropic channel is of
the form

�iso(ρ) = p
(ρ) + (1 − p)
I

d
, (12)

where 
 is any linear channel that preserves the eigenvalues
of ρ. According to Ref. [27], 
 is either a unitary operation
or unitarily equivalent to transpose. Parameter p is chosen to
make sure that � is a completely positive channel. In particular,
−1/(d − 1) � p � 1 when 
 is a unitary operation, and
−1/(d − 1) � p � 1/(d + 1) when 
 is unitarily equivalent
to transpose.

Theorem 2. Consider the half-classical input state in Eq. (1)
with B a qutrit, a channel � cannot create a quantum
correlation in any half-classical input state if and only if � is
either a completely dechering channel or an isotropic channel.

Proof. Write the eigendecomposition of �(I ) as

�(I ) =
N∑

i=1

λiIri
. (13)

Here
∑N

i=1 ri = ∑N
i=1 riλi = 3, λi � 0, ri are positive inte-

gers, and Iri
are identities of the ri-dimensional subspace Vri

.
From Eq. (9) we have

�(ρ) =
N∑

i=1

qiξ
ρ
ri

∀ ρ, (14)

where ξ
ρ
ri

is a density operator on Vri
.

Clearly, when the eigenvectors of �(I ) are nondegenerate,
i.e., N = 3 and Eq. (13) becomes �(I ) = ∑3

i=1 λi�i , the
channel � is a completely decohering channel, since it takes
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any input state ρ to a diagonal form on basis {�i}. When two
or three eigenvectors of �(I ) are degenerate, we study the
eigendecomposition of �(φ) for a pure input state |φ〉:

�(φ) =
Nφ∑
i=1

λ
φ

i Iri (φ), (15)

where Nφ � N and Vri (φ) ⊆ Vrj
. When none of �(φ) break

the degeneracy of eigenvectors of �(I ), i.e., Nφ = N and
Vri (φ) = Vri

, the channel is also a completely decohering
channel. Now we focus on the case that some �(φ) can
break the degeneracy of eigenvectors of �(I ), i.e., Nφ > N

and Vri (φ) ⊂ Vrj
for some i. Let {|φk〉}2

k=0 be a basis of the
three-dimensional Hilbert space and |φ0〉 be the pure input
state whose corresponding output state �(φ0) has the most
different eigenvalues. It means that Nφ0 � Nφ,∀ φ.

Case 1. For any state |φ⊥
0 〉 = c1|φ1〉 + c2|φ2〉 that is orthog-

onal to |φ0〉, we have Nφ⊥
0 = Nφ0 andVri (φ⊥

0 ) = Vri (φ0).Then for

an arbitrary input state ϕ = ∑2
i=0 ci |φi〉, we have

[�(ϕ),�(c∗
2|φ1〉 − c∗

1|φ2〉)] = 0. (16)

Therefore, �(ϕ) is diagonal on the same basis as �(φ0).
Case 2. There exists a pure state, e.g., |φ2〉, whose

corresponding output state �(φ2) does not break as much
degeneracy as �(φ0), i.e., Nφ2 < Nφ0 . We will first prove that
for any pure state |ϕ01〉 = |φ0〉 − β0|φ1〉 in two-dimensional
subspace Wφ2

2 , the output state is diagonal on the same basis
as �(φ0), e.g., {�i}. We introduce |ϕ(β)〉 = |ϕ01〉 + β|φ2〉 and
|ϕ02(β)〉 = β∗|φ0〉 − |φ2〉. Notice that 〈ϕ02(β)|ϕ(β)〉 = 0, and
we have

[�(ϕ02(β)),�(ϕ(β))] = 0. (17)

Because
∑2

k=0 |φk〉〈φk| = I , we have Nφ1 = Nφ0 andVri (φ1) =
Vri (φ0). Therefore, �(ϕ02(β)) is diagonal on {�i} by notic-
ing that [�(ϕ02(β)),�(φ1)] = 0. Since the channel cannot
increase the distance between states, �(ϕ02(β)) breaks the
same degeneracy as �(φ0) for sufficiently large |β|. From
Eq. (17), we have �(ϕ(β)) and �(ϕ(−β)) are diago-
nal on {�i}. Therefore, �(ϕ01) = �(ϕ(β)) + �(ϕ(−β)) −
|β|2�(φ2) is also diagonal on {�i}. Further, we will show
that �(ϕ(β)) is diagonal on {�i} for arbitrary β. From
Eq. (17), this is obvious when �(ϕ02(β)) is nondegenerate.
For the case where �(ϕ02(β)) is degenerate, �(ϕ02(−β)) =
|β|2�(φ0) + �(φ2) − �(ϕ02(β)) is nondegenerate, and conse-
quently, �(ϕ(−β)) is diagonal on {�i}. Therefore, �(ϕ(β)) =
�(ϕ01) + |β|2�(φ2) − �(ϕ(−β)) is diagonal on {�i}. � is a
completely decohering channel.

Case 3. Now we are left only with the case that Nφ⊥
0 = Nφ0

but Iri (φ⊥
0 ) 	= Iri (φ0), which can happen only when �(I ) = I

and Nφk = 2. Therefore, we have

�(φk) = p�(φk) + (1 − p)
I

3
, (18)

where �(φk) is a basis determined by |φk〉. Notice that
p is independent of |φk〉 because of the linearity of �.
Consequently, for any input state ρ = ∑

i pi |αi〉〈αi |, we have
�(ρ) = p

∑
i pi�(αi) + (1 − p)I/3. It means that channel �

is an isotropic channel.

Combining the three cases, we conclude that for a qutrit,
a commutativity-preserving channel is either a completely
decohering channel or an isotropic channel.

Since the depolarizing channel is a subset of mixing chan-
nel, there exist mixing channels that are able to locally create
quantum correlation. Therefore, mixedness can contribute to
creation of quantum correlations. Here we give an example to
look more closely at why a mixing channel can create quantum
correlation in states with high dimensions. Consider the mixing
channel �(·) = ∑

i E
(i)(·)E(i)†, where the Kraus operators are

E(0) = |2〉〈2|,
(19)

E(i) = eiu
(i)
2 (|0〉〈0| + |1〉〈1|) i = 1,2, . . . .

Here u
(i)
2 are rank-2 unitary operators on basis {|0〉,|1〉}. This

channel can create quantum correlation in the state ρ = ρ̃
φ

A ⊗
|φ〉B〈φ| + ρ̃

ψ

A ⊗ |ψ〉B〈ψ | if and only if Eq. (4) is violated.
Writing the two orthogonal states as |φ〉 = ∑2

i=0 ai |i〉 and
|ψ〉 = ∑2

i=0 bi |i〉 (
∑2

i=0 aib
∗
i = 0), we obtain the left-hand

side of Eq. (4):[ ∑
i

e2
i u

(i)
2 |φ2〉〈φ2|u(i)†

2 ,
∑

i

e2
i u

(i)
2 |ψ2〉〈ψ2|u(i)†

2

]
, (20)

where |φ2〉 = a0|0〉 + a1|0〉 and |ψ2〉 = b0|0〉 + b1|0〉 are re-
duced states on Hilbert space of dimension 2. Therefore,
Eq. (4) is violated if and only if 〈φ2|ψ2〉 	= 0,1. Two high-
dimension orthogonal states may become unorthogonal when
reduced to Hilbert space of dimension two. This is just the
reason for creating quantum correlation using a local mixing
channel. Isotropic channels act on all the states in Hilbert
spaces equivalently, so they are likely the only subset of mixing
channels that belongs to the class of commutativity-preserving
channels. This observation leads to the following conjecture.

Conjecture. Consider the half-classical input state in Eq. (1)
where B is a d-dimensional quantum system (qudit) with d �
3, then a channel � cannot create quantum correlation in any
half-classical input state if and only if � is either a completely
decohering channel or an isotropic channel.

We further prove that a mixing channel cannot increase the
teleportation fidelity of any two-qudit state. The average tele-
portation fidelity f is related to the maximum singlet fraction
(MSF) [28] F = max�〈�|ρ|�〉 as f = (dF + 1)/(d + 1).
After the action of a mixing channel on B, the MSF becomes

F ′ = Tr(ρ�), (21)

where � = ∑
i I ⊗ E(i)†|�〉〈�|I ⊗ E(i). Notice that for a

mixing channel �(·) = ∑
i E

(i)(·)E(i)†, its conjecture �∗(·) =∑
i E

(i)†(·)E(i) is also a mixing channel. Therefore, �A =
�B = I/2, so � can be decomposed as a mixture of maximally
entangled pure states � = ∑

i pi |�i〉〈�i |. Then we have
F ′ = ∑

i pi〈�i |ρ|�i〉 � F . Therefore, average teleportation
fidelity can never be increased by a mixing channel. This
result suggests that quantum correlation created by a mixing
channel may not be a useful resource for quantum-information
tasks.

In summary, we have proved that the necessary and suffi-
cient condition for a local operation to create quantum correla-
tion in some half-classical state is that it is not a commutativity-
preserving channel. When the subsystem B affected by the
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local channel is a qubit, a commutativity-preserving channel
is either a mixing channel or a completely decohering channel.
This result confirms the results in Ref. [24]. When B is a qutrit,
we have proved that a commutativity-preserving channel is
either an isotropic channel or a completely decohering channel.
This result is likely to be extended to arbitrary finite dimension
situation.
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